EgoHaFL / README.md
MickeyLLG's picture
Update README.md
061ef3c verified
---
dataset_info:
features:
- name: uid
dtype: string
- name: video_id
dtype: string
- name: start_second
dtype: float32
- name: end_second
dtype: float32
- name: caption
dtype: string
- name: fx
dtype: float32
- name: fy
dtype: float32
- name: cx
dtype: float32
- name: cy
dtype: float32
- name: vid_w
dtype: int32
- name: vid_h
dtype: int32
- name: annotation
list:
- name: mano_params
struct:
- name: global_orient
list: float32
- name: hand_pose
list: float32
- name: betas
list: float32
- name: is_right
dtype: bool
- name: keypoints_3d
list: float32
- name: keypoints_2d
list: float32
- name: vertices
list: float32
- name: box_center
list: float32
- name: box_size
dtype: float32
- name: camera_t
list: float32
- name: focal_length
list: float32
splits:
- name: train
num_examples: 241912
- name: test
num_examples: 5108
configs:
- config_name: default
data_files:
- split: train
path: EgoHaFL_train.csv
- split: test
path: EgoHaFL_test.csv
license: mit
language:
- en
pretty_name: EgoHaFL:Egocentric 3D Hand Forecasting Dataset with Language Instruction
size_categories:
- 200K<n<300K
tags:
- embodied-ai
- robotic
- egocentric
- 3d-hand
- forecasting
- hand-pose
---
# **EgoHaFL: Egocentric 3D Hand Forecasting Dataset with Language Instruction**
**EgoHaFL** is a dataset designed for **egocentric (first-person) 3D hand forecasting** with accompanying **natural language instructions**.
It contains short video clips, text descriptions, camera intrinsics, and detailed MANO-based 3D hand annotations.
The dataset supports research in **3D hand forecasting**, **hand pose estimation**, **hand–object interaction understanding**, and **video–language modeling**.
![Demo GIF](EgoHaFL.gif)
[![Paper](https://img.shields.io/badge/Paper-B31B1B?style=for-the-badge&logo=arxiv&logoColor=white)](https://arxiv.org/pdf/2511.18127)
[![Model](https://img.shields.io/badge/Model-FF6D00?style=for-the-badge\&logo=huggingface\&logoColor=ffffff)](https://huggingface.co/ut-vision/SFHand)
[![GitHub](https://img.shields.io/badge/GitHub-000000?style=for-the-badge&logo=github&logoColor=white)](https://github.com/ut-vision/SFHand)
---
## 📦 **Dataset Contents**
### **1. Metadata CSV Files**
* `EgoHaFL_train.csv`
* `EgoHaFL_test.csv`
Each row corresponds to one sample and contains:
| Field | Description |
| ---------------- | ------------------------------------------ |
| `uid` | Unique sample identifier |
| `video_id` | Source video identifier |
| `start_second` | Start time of the clip (seconds) |
| `end_second` | End time of the clip (seconds) |
| `caption` | Natural language instruction / description |
| `fx`, `fy` | Camera focal lengths |
| `cx`, `cy` | Principal point |
| `vid_w`, `vid_h` | Original video resolution |
---
### **2. 3D Hand Annotations (EgoHaFL_lmdb)**
The folder `EgoHaFL_lmdb` stores all 3D annotations in **LMDB format**.
* **Key**: `uid`
* **Value**: a **list of length 16**, representing uniformly sampled frames across a **3-second video segment**.
Each of the 16 elements is a dictionary containing:
* `mano_params`
* `global_orient (n, 1, 3 ,3)`
* `hand_pose (n, 15, 3, 3)`
* `betas (n, 10)`
* `is_right (n,)`
* `keypoints_3d (n, 21, 3)`
* `keypoints_2d (n, 21, 2)`
* `vertices (n, 778, 3)`
* `box_center (n, 2)`
* `box_size (n,)`
* `camera_t (n, 3)` *3D hand position in camera coordinate*
* `focal_length (n, 2)`
Here, `n` denotes the number of hands present in each frame, which may vary across frames. When no hands are detected, the dictionary is empty.
---
## 🌳 **Annotation Structure (Tree View)**
Below is the hierarchical structure for a single annotation entry (`uid → 16-frame list → per-frame dict`):
```
<uid>
└── list (length = 16)
├── [0]
│ ├── mano_params
│ │ ├── global_orient
│ │ ├── hand_pose
│ │ └── betas
│ ├── is_right
│ ├── keypoints_3d
│ ├── keypoints_2d
│ ├── vertices
│ ├── box_center
│ ├── box_size
│ ├── camera_t
│ └── focal_length
├── [1]
│ └── ...
├── [2]
│ └── ...
└── ...
```
---
## 🎥 **Source of Video Data**
The video clips used in **EgoHaFL** originate from the **Ego4D V1** dataset.
For our experiments, we use the **original-length videos compressed to 224p resolution** to ensure efficient storage and training.
Official Ego4D website:
🔗 **[https://ego4d-data.org/](https://ego4d-data.org/)**
---
## 🧩 **Example of Use**
For details on how to load and use the EgoHaFL dataset,
please refer to the **dataloader implementation** in our GitHub repository:
🔗 **[https://github.com/ut-vision/SFHand](https://github.com/ut-vision/SFHand)**
---
## 🧠 **Supported Research Tasks**
* Egocentric 3D hand forecasting
* Hand motion prediction and trajectory modeling
* 3D hand pose estimation
* Hand–object interaction understanding
* Video–language multimodal modeling
* Temporal reasoning with 3D human hands
---
## 📚 Citation
If you use this dataset or find it helpful in your research, please cite:
```latex
@article{liu2025sfhand,
title={SFHand: A Streaming Framework for Language-guided 3D Hand Forecasting and Embodied Manipulation},
author={Liu, Ruicong and Huang, Yifei and Ouyang, Liangyang and Kang, Caixin and and Sato, Yoichi},
journal={arXiv preprint arXiv:2511.18127},
year={2025}
}
```