|
|
--- |
|
|
dataset_info: |
|
|
features: |
|
|
- name: uid |
|
|
dtype: string |
|
|
- name: video_id |
|
|
dtype: string |
|
|
- name: start_second |
|
|
dtype: float32 |
|
|
- name: end_second |
|
|
dtype: float32 |
|
|
- name: caption |
|
|
dtype: string |
|
|
- name: fx |
|
|
dtype: float32 |
|
|
- name: fy |
|
|
dtype: float32 |
|
|
- name: cx |
|
|
dtype: float32 |
|
|
- name: cy |
|
|
dtype: float32 |
|
|
- name: vid_w |
|
|
dtype: int32 |
|
|
- name: vid_h |
|
|
dtype: int32 |
|
|
- name: annotation |
|
|
list: |
|
|
- name: mano_params |
|
|
struct: |
|
|
- name: global_orient |
|
|
list: float32 |
|
|
- name: hand_pose |
|
|
list: float32 |
|
|
- name: betas |
|
|
list: float32 |
|
|
- name: is_right |
|
|
dtype: bool |
|
|
- name: keypoints_3d |
|
|
list: float32 |
|
|
- name: keypoints_2d |
|
|
list: float32 |
|
|
- name: vertices |
|
|
list: float32 |
|
|
- name: box_center |
|
|
list: float32 |
|
|
- name: box_size |
|
|
dtype: float32 |
|
|
- name: camera_t |
|
|
list: float32 |
|
|
- name: focal_length |
|
|
list: float32 |
|
|
splits: |
|
|
- name: train |
|
|
num_examples: 241912 |
|
|
- name: test |
|
|
num_examples: 5108 |
|
|
configs: |
|
|
- config_name: default |
|
|
data_files: |
|
|
- split: train |
|
|
path: EgoHaFL_train.csv |
|
|
- split: test |
|
|
path: EgoHaFL_test.csv |
|
|
license: mit |
|
|
language: |
|
|
- en |
|
|
pretty_name: EgoHaFL:Egocentric 3D Hand Forecasting Dataset with Language Instruction |
|
|
size_categories: |
|
|
- 200K<n<300K |
|
|
tags: |
|
|
- embodied-ai |
|
|
- robotic |
|
|
- egocentric |
|
|
- 3d-hand |
|
|
- forecasting |
|
|
- hand-pose |
|
|
--- |
|
|
|
|
|
# **EgoHaFL: Egocentric 3D Hand Forecasting Dataset with Language Instruction** |
|
|
|
|
|
**EgoHaFL** is a dataset designed for **egocentric (first-person) 3D hand forecasting** with accompanying **natural language instructions**. |
|
|
It contains short video clips, text descriptions, camera intrinsics, and detailed MANO-based 3D hand annotations. |
|
|
The dataset supports research in **3D hand forecasting**, **hand pose estimation**, **hand–object interaction understanding**, and **video–language modeling**. |
|
|
|
|
|
 |
|
|
|
|
|
[](https://arxiv.org/pdf/2511.18127) |
|
|
[](https://huggingface.co/ut-vision/SFHand) |
|
|
[](https://github.com/ut-vision/SFHand) |
|
|
|
|
|
--- |
|
|
|
|
|
## 📦 **Dataset Contents** |
|
|
|
|
|
### **1. Metadata CSV Files** |
|
|
|
|
|
* `EgoHaFL_train.csv` |
|
|
* `EgoHaFL_test.csv` |
|
|
|
|
|
Each row corresponds to one sample and contains: |
|
|
|
|
|
| Field | Description | |
|
|
| ---------------- | ------------------------------------------ | |
|
|
| `uid` | Unique sample identifier | |
|
|
| `video_id` | Source video identifier | |
|
|
| `start_second` | Start time of the clip (seconds) | |
|
|
| `end_second` | End time of the clip (seconds) | |
|
|
| `caption` | Natural language instruction / description | |
|
|
| `fx`, `fy` | Camera focal lengths | |
|
|
| `cx`, `cy` | Principal point | |
|
|
| `vid_w`, `vid_h` | Original video resolution | |
|
|
|
|
|
--- |
|
|
|
|
|
### **2. 3D Hand Annotations (EgoHaFL_lmdb)** |
|
|
|
|
|
The folder `EgoHaFL_lmdb` stores all 3D annotations in **LMDB format**. |
|
|
|
|
|
* **Key**: `uid` |
|
|
* **Value**: a **list of length 16**, representing uniformly sampled frames across a **3-second video segment**. |
|
|
|
|
|
Each of the 16 elements is a dictionary containing: |
|
|
|
|
|
* `mano_params` |
|
|
|
|
|
* `global_orient (n, 1, 3 ,3)` |
|
|
* `hand_pose (n, 15, 3, 3)` |
|
|
* `betas (n, 10)` |
|
|
* `is_right (n,)` |
|
|
* `keypoints_3d (n, 21, 3)` |
|
|
* `keypoints_2d (n, 21, 2)` |
|
|
* `vertices (n, 778, 3)` |
|
|
* `box_center (n, 2)` |
|
|
* `box_size (n,)` |
|
|
* `camera_t (n, 3)` *3D hand position in camera coordinate* |
|
|
* `focal_length (n, 2)` |
|
|
|
|
|
Here, `n` denotes the number of hands present in each frame, which may vary across frames. When no hands are detected, the dictionary is empty. |
|
|
|
|
|
--- |
|
|
|
|
|
## 🌳 **Annotation Structure (Tree View)** |
|
|
|
|
|
Below is the hierarchical structure for a single annotation entry (`uid → 16-frame list → per-frame dict`): |
|
|
|
|
|
``` |
|
|
<uid> |
|
|
└── list (length = 16) |
|
|
├── [0] |
|
|
│ ├── mano_params |
|
|
│ │ ├── global_orient |
|
|
│ │ ├── hand_pose |
|
|
│ │ └── betas |
|
|
│ ├── is_right |
|
|
│ ├── keypoints_3d |
|
|
│ ├── keypoints_2d |
|
|
│ ├── vertices |
|
|
│ ├── box_center |
|
|
│ ├── box_size |
|
|
│ ├── camera_t |
|
|
│ └── focal_length |
|
|
├── [1] |
|
|
│ └── ... |
|
|
├── [2] |
|
|
│ └── ... |
|
|
└── ... |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## 🎥 **Source of Video Data** |
|
|
|
|
|
The video clips used in **EgoHaFL** originate from the **Ego4D V1** dataset. |
|
|
For our experiments, we use the **original-length videos compressed to 224p resolution** to ensure efficient storage and training. |
|
|
|
|
|
Official Ego4D website: |
|
|
🔗 **[https://ego4d-data.org/](https://ego4d-data.org/)** |
|
|
|
|
|
--- |
|
|
|
|
|
## 🧩 **Example of Use** |
|
|
|
|
|
For details on how to load and use the EgoHaFL dataset, |
|
|
please refer to the **dataloader implementation** in our GitHub repository: |
|
|
|
|
|
🔗 **[https://github.com/ut-vision/SFHand](https://github.com/ut-vision/SFHand)** |
|
|
|
|
|
--- |
|
|
|
|
|
## 🧠 **Supported Research Tasks** |
|
|
|
|
|
* Egocentric 3D hand forecasting |
|
|
* Hand motion prediction and trajectory modeling |
|
|
* 3D hand pose estimation |
|
|
* Hand–object interaction understanding |
|
|
* Video–language multimodal modeling |
|
|
* Temporal reasoning with 3D human hands |
|
|
|
|
|
--- |
|
|
|
|
|
## 📚 Citation |
|
|
|
|
|
If you use this dataset or find it helpful in your research, please cite: |
|
|
|
|
|
```latex |
|
|
@article{liu2025sfhand, |
|
|
title={SFHand: A Streaming Framework for Language-guided 3D Hand Forecasting and Embodied Manipulation}, |
|
|
author={Liu, Ruicong and Huang, Yifei and Ouyang, Liangyang and Kang, Caixin and and Sato, Yoichi}, |
|
|
journal={arXiv preprint arXiv:2511.18127}, |
|
|
year={2025} |
|
|
} |
|
|
``` |
|
|
|
|
|
|