dataset_info:
features:
- name: uid
dtype: string
- name: video_id
dtype: string
- name: start_second
dtype: float32
- name: end_second
dtype: float32
- name: caption
dtype: string
- name: fx
dtype: float32
- name: fy
dtype: float32
- name: cx
dtype: float32
- name: cy
dtype: float32
- name: vid_w
dtype: int32
- name: vid_h
dtype: int32
- name: annotation
list:
- name: mano_params
struct:
- name: global_orient
list: float32
- name: hand_pose
list: float32
- name: betas
list: float32
- name: is_right
dtype: bool
- name: keypoints_3d
list: float32
- name: keypoints_2d
list: float32
- name: vertices
list: float32
- name: box_center
list: float32
- name: box_size
dtype: float32
- name: camera_t
list: float32
- name: focal_length
list: float32
splits:
- name: train
num_examples: 241912
- name: test
num_examples: 5108
configs:
- config_name: default
data_files:
- split: train
path: EgoHaFL_train.csv
- split: test
path: EgoHaFL_test.csv
license: mit
language:
- en
pretty_name: EgoHaFL:Egocentric 3D Hand Forecasting Dataset with Language Instruction
size_categories:
- 200K<n<300K
tags:
- embodied-ai
- robotic
- egocentric
- 3d-hand
- forecasting
- hand-pose
EgoHaFL: Egocentric 3D Hand Forecasting Dataset with Language Instruction
EgoHaFL is a dataset designed for egocentric (first-person) 3D hand forecasting with accompanying natural language instructions. It contains short video clips, text descriptions, camera intrinsics, and detailed MANO-based 3D hand annotations. The dataset supports research in 3D hand forecasting, hand pose estimation, hand–object interaction understanding, and video–language modeling.
📦 Dataset Contents
1. Metadata CSV Files
EgoHaFL_train.csvEgoHaFL_test.csv
Each row corresponds to one sample and contains:
| Field | Description |
|---|---|
uid |
Unique sample identifier |
video_id |
Source video identifier |
start_second |
Start time of the clip (seconds) |
end_second |
End time of the clip (seconds) |
caption |
Natural language instruction / description |
fx, fy |
Camera focal lengths |
cx, cy |
Principal point |
vid_w, vid_h |
Original video resolution |
2. 3D Hand Annotations (EgoHaFL_lmdb)
The folder EgoHaFL_lmdb stores all 3D annotations in LMDB format.
- Key:
uid - Value: a list of length 16, representing uniformly sampled frames across a 3-second video segment.
Each of the 16 elements is a dictionary containing:
mano_paramsglobal_orient (n, 1, 3 ,3)hand_pose (n, 15, 3, 3)betas (n, 10)
is_right (n,)keypoints_3d (n, 21, 3)keypoints_2d (n, 21, 2)vertices (n, 778, 3)box_center (n, 2)box_size (n,)camera_t (n, 3)3D hand position in camera coordinatefocal_length (n, 2)
Here, n denotes the number of hands present in each frame, which may vary across frames. When no hands are detected, the dictionary is empty.
🌳 Annotation Structure (Tree View)
Below is the hierarchical structure for a single annotation entry (uid → 16-frame list → per-frame dict):
<uid>
└── list (length = 16)
├── [0]
│ ├── mano_params
│ │ ├── global_orient
│ │ ├── hand_pose
│ │ └── betas
│ ├── is_right
│ ├── keypoints_3d
│ ├── keypoints_2d
│ ├── vertices
│ ├── box_center
│ ├── box_size
│ ├── camera_t
│ └── focal_length
├── [1]
│ └── ...
├── [2]
│ └── ...
└── ...
🎥 Source of Video Data
The video clips used in EgoHaFL originate from the Ego4D V1 dataset. For our experiments, we use the original-length videos compressed to 224p resolution to ensure efficient storage and training.
Official Ego4D website: 🔗 https://ego4d-data.org/
🧩 Example of Use
For details on how to load and use the EgoHaFL dataset, please refer to the dataloader implementation in our GitHub repository:
🔗 https://github.com/ut-vision/SFHand
🧠 Supported Research Tasks
- Egocentric 3D hand forecasting
- Hand motion prediction and trajectory modeling
- 3D hand pose estimation
- Hand–object interaction understanding
- Video–language multimodal modeling
- Temporal reasoning with 3D human hands
📚 Citation
If you use this dataset or find it helpful in your research, please cite:
@article{liu2025sfhand,
title={SFHand: A Streaming Framework for Language-guided 3D Hand Forecasting and Embodied Manipulation},
author={Liu, Ruicong and Huang, Yifei and Ouyang, Liangyang and Kang, Caixin and and Sato, Yoichi},
journal={arXiv preprint arXiv:2511.18127},
year={2025}
}
