SentenceTransformer based on w601sxs/b1ade-embed
This is a sentence-transformers model finetuned from w601sxs/b1ade-embed on the sentence-transformers/wikipedia-en-sentences dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: w601sxs/b1ade-embed
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("w601sxs/b1ade-embed-distilled-from-gte-large-en-v1.5")
sentences = [
'A man is walking',
'The man is going for a walk.',
'The station opened on 1 December 1896.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.6738 |
| spearman_cosine |
0.7347 |
| pearson_manhattan |
0.7006 |
| spearman_manhattan |
0.7089 |
| pearson_euclidean |
0.7017 |
| spearman_euclidean |
0.7102 |
| pearson_dot |
0.7336 |
| spearman_dot |
0.751 |
| pearson_max |
0.7336 |
| spearman_max |
0.751 |
Knowledge Distillation
| Metric |
Value |
| negative_mse |
-21.5451 |
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.6772 |
| spearman_cosine |
0.7311 |
| pearson_manhattan |
0.7077 |
| spearman_manhattan |
0.7121 |
| pearson_euclidean |
0.7071 |
| spearman_euclidean |
0.7115 |
| pearson_dot |
0.7026 |
| spearman_dot |
0.6949 |
| pearson_max |
0.7077 |
| spearman_max |
0.7311 |
Training Details
Training Dataset
sentence-transformers/wikipedia-en-sentences
- Dataset: sentence-transformers/wikipedia-en-sentences at 4a0972d
- Size: 200,000 training samples
- Columns:
sentence and label
- Approximate statistics based on the first 1000 samples:
|
sentence |
label |
| type |
string |
list |
| details |
- min: 4 tokens
- mean: 12.24 tokens
- max: 52 tokens
|
|
- Samples:
| sentence |
label |
A person on a horse jumps over a broken down airplane. |
[-0.5300068259239197, 0.07807248830795288, 0.304331511259079, 0.3473575711250305, 0.3993019461631775, ...] |
Children smiling and waving at camera |
[-0.3918086886405945, 0.514893114566803, 0.38178062438964844, -0.29475438594818115, -0.07984668761491776, ...] |
A boy is jumping on skateboard in the middle of a red bridge. |
[-0.7029106020927429, 0.08336036652326584, 0.7830113768577576, -0.7898964285850525, 0.27573251724243164, ...] |
- Loss:
MSELoss
Evaluation Dataset
sentence-transformers/wikipedia-en-sentences
- Dataset: sentence-transformers/wikipedia-en-sentences at 4a0972d
- Size: 10,000 evaluation samples
- Columns:
sentence and label
- Approximate statistics based on the first 1000 samples:
|
sentence |
label |
| type |
string |
list |
| details |
- min: 5 tokens
- mean: 13.23 tokens
- max: 57 tokens
|
|
- Samples:
| sentence |
label |
Two women are embracing while holding to go packages. |
[-0.5707114338874817, -0.5041555762290955, -1.3100334405899048, 0.5848354697227478, -0.3452240526676178, ...] |
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. |
[-0.4810343384742737, 0.034435614943504333, -0.669406533241272, -0.16233624517917633, 0.5214978456497192, ...] |
A man selling donuts to a customer during a world exhibition event held in the city of Angeles |
[-0.2572114169597626, 0.19592943787574768, -0.6243088841438293, -0.4749126136302948, -0.6737443804740906, ...] |
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
learning_rate: 0.0001
num_train_epochs: 1
warmup_ratio: 0.1
fp16: True
load_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
learning_rate: 0.0001
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
loss |
negative_mse |
sts-dev_spearman_cosine |
sts-test_spearman_cosine |
| 0.1279 |
100 |
0.4302 |
- |
- |
- |
- |
| 0.2558 |
200 |
0.2398 |
- |
- |
- |
- |
| 0.3836 |
300 |
0.1918 |
- |
- |
- |
- |
| 0.5115 |
400 |
0.1683 |
- |
- |
- |
- |
| 0.6394 |
500 |
0.1539 |
0.2155 |
-21.5451 |
0.7347 |
- |
| 0.7673 |
600 |
0.1456 |
- |
- |
- |
- |
| 0.8951 |
700 |
0.1393 |
- |
- |
- |
- |
| 1.0 |
782 |
- |
- |
- |
- |
0.7311 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.0
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}