Fdet / train_svm.py
siyah1's picture
Upload 4 files
f231820 verified
import os
import cv2
import numpy as np
import insightface
from sklearn.svm import SVC
import joblib
from tqdm import tqdm
# 1. ArcFace ๋ชจ๋ธ ๋กœ๋”ฉ
model = insightface.app.FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider'])
model.prepare(ctx_id=0)
X = []
y = []
# 2. ์–ผ๊ตด ์ž„๋ฒ ๋”ฉ ์ถ”์ถœ ํ•จ์ˆ˜
def extract_embeddings(folder_path, label):
for fname in tqdm(os.listdir(folder_path), desc=f"{label} - {os.path.basename(folder_path)}"):
if not fname.lower().endswith((".jpg", ".jpeg", ".png")):
continue
path = os.path.join(folder_path, fname)
img = cv2.imread(path)
if img is None:
continue
faces = model.get(img)
if faces:
emb = faces[0].embedding
X.append(emb)
y.append(label)
# 3. ์‚ฌ๋žŒ(1) / ๋น„์‚ฌ๋žŒ(0) ํด๋”๋กœ๋ถ€ํ„ฐ ์ž„๋ฒ ๋”ฉ ์ถ”์ถœ
extract_embeddings("dataset/human", 1)
extract_embeddings("dataset/nonhuman", 0)
print(f"\nโœ… ์ด ์ƒ˜ํ”Œ ์ˆ˜: {len(X)}")
print(f" - ์‚ฌ๋žŒ ์–ผ๊ตด: {y.count(1)}")
print(f" - ๋น„์‚ฌ๋žŒ: {y.count(0)}")
# 4. SVM ๋ถ„๋ฅ˜๊ธฐ ํ•™์Šต
clf = SVC(kernel='linear', probability=True)
clf.fit(X, y)
# 5. ๋ชจ๋ธ ์ €์žฅ
joblib.dump(clf, "is_human_classifier.pkl")
print("\nโœ… ๋ถ„๋ฅ˜๊ธฐ ์ €์žฅ ์™„๋ฃŒ: is_human_classifier.pkl")