File size: 1,340 Bytes
f231820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os
import cv2
import numpy as np
import insightface
from sklearn.svm import SVC
import joblib
from tqdm import tqdm

# 1. ArcFace ๋ชจ๋ธ ๋กœ๋”ฉ
model = insightface.app.FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider'])
model.prepare(ctx_id=0)

X = []
y = []

# 2. ์–ผ๊ตด ์ž„๋ฒ ๋”ฉ ์ถ”์ถœ ํ•จ์ˆ˜
def extract_embeddings(folder_path, label):
    for fname in tqdm(os.listdir(folder_path), desc=f"{label} - {os.path.basename(folder_path)}"):
        if not fname.lower().endswith((".jpg", ".jpeg", ".png")):
            continue
        path = os.path.join(folder_path, fname)
        img = cv2.imread(path)
        if img is None:
            continue
        faces = model.get(img)
        if faces:
            emb = faces[0].embedding
            X.append(emb)
            y.append(label)

# 3. ์‚ฌ๋žŒ(1) / ๋น„์‚ฌ๋žŒ(0) ํด๋”๋กœ๋ถ€ํ„ฐ ์ž„๋ฒ ๋”ฉ ์ถ”์ถœ
extract_embeddings("dataset/human", 1)
extract_embeddings("dataset/nonhuman", 0)

print(f"\nโœ… ์ด ์ƒ˜ํ”Œ ์ˆ˜: {len(X)}")
print(f"   - ์‚ฌ๋žŒ ์–ผ๊ตด: {y.count(1)}")
print(f"   - ๋น„์‚ฌ๋žŒ: {y.count(0)}")

# 4. SVM ๋ถ„๋ฅ˜๊ธฐ ํ•™์Šต
clf = SVC(kernel='linear', probability=True)
clf.fit(X, y)

# 5. ๋ชจ๋ธ ์ €์žฅ
joblib.dump(clf, "is_human_classifier.pkl")
print("\nโœ… ๋ถ„๋ฅ˜๊ธฐ ์ €์žฅ ์™„๋ฃŒ: is_human_classifier.pkl")