File size: 1,340 Bytes
f231820 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import os
import cv2
import numpy as np
import insightface
from sklearn.svm import SVC
import joblib
from tqdm import tqdm
# 1. ArcFace ๋ชจ๋ธ ๋ก๋ฉ
model = insightface.app.FaceAnalysis(name="buffalo_l", providers=['CPUExecutionProvider'])
model.prepare(ctx_id=0)
X = []
y = []
# 2. ์ผ๊ตด ์๋ฒ ๋ฉ ์ถ์ถ ํจ์
def extract_embeddings(folder_path, label):
for fname in tqdm(os.listdir(folder_path), desc=f"{label} - {os.path.basename(folder_path)}"):
if not fname.lower().endswith((".jpg", ".jpeg", ".png")):
continue
path = os.path.join(folder_path, fname)
img = cv2.imread(path)
if img is None:
continue
faces = model.get(img)
if faces:
emb = faces[0].embedding
X.append(emb)
y.append(label)
# 3. ์ฌ๋(1) / ๋น์ฌ๋(0) ํด๋๋ก๋ถํฐ ์๋ฒ ๋ฉ ์ถ์ถ
extract_embeddings("dataset/human", 1)
extract_embeddings("dataset/nonhuman", 0)
print(f"\nโ
์ด ์ํ ์: {len(X)}")
print(f" - ์ฌ๋ ์ผ๊ตด: {y.count(1)}")
print(f" - ๋น์ฌ๋: {y.count(0)}")
# 4. SVM ๋ถ๋ฅ๊ธฐ ํ์ต
clf = SVC(kernel='linear', probability=True)
clf.fit(X, y)
# 5. ๋ชจ๋ธ ์ ์ฅ
joblib.dump(clf, "is_human_classifier.pkl")
print("\nโ
๋ถ๋ฅ๊ธฐ ์ ์ฅ ์๋ฃ: is_human_classifier.pkl")
|