llm-trainer / references /hub_saving.md
burtenshaw's picture
burtenshaw HF Staff
Upload folder using huggingface_hub
6ab17a7 verified
# Saving Training Results to Hugging Face Hub
**⚠️ CRITICAL:** Training environments are ephemeral. ALL results are lost when a job completes unless pushed to the Hub.
## Why Hub Push is Required
When running on Hugging Face Jobs:
- Environment is temporary
- All files deleted on job completion
- No local disk persistence
- Cannot access results after job ends
**Without Hub push, training is completely wasted.**
## Required Configuration
### 1. Training Configuration
In your SFTConfig or trainer config:
```python
SFTConfig(
push_to_hub=True, # Enable Hub push
hub_model_id="username/model-name", # Target repository
)
```
### 2. Job Configuration
When submitting the job:
```python
hf_jobs("uv", {
"script": "train.py",
"secrets": {"HF_TOKEN": "$HF_TOKEN"} # Provide authentication
})
```
**The `$HF_TOKEN` placeholder is automatically replaced with your Hugging Face token.**
## Complete Example
```python
# train.py
# /// script
# dependencies = ["trl"]
# ///
from trl import SFTTrainer, SFTConfig
from datasets import load_dataset
dataset = load_dataset("trl-lib/Capybara", split="train")
# Configure with Hub push
config = SFTConfig(
output_dir="my-model",
num_train_epochs=3,
# ✅ CRITICAL: Hub push configuration
push_to_hub=True,
hub_model_id="myusername/my-trained-model",
# Optional: Push strategy
push_to_hub_model_id="myusername/my-trained-model",
push_to_hub_organization=None,
push_to_hub_token=None, # Uses environment token
)
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset,
args=config,
)
trainer.train()
# ✅ Push final model
trainer.push_to_hub()
print("✅ Model saved to: https://huggingface.co/myusername/my-trained-model")
```
**Submit with authentication:**
```python
hf_jobs("uv", {
"script": "train.py",
"flavor": "a10g-large",
"timeout": "2h",
"secrets": {"HF_TOKEN": "$HF_TOKEN"} # ✅ Required!
})
```
## What Gets Saved
When `push_to_hub=True`:
1. **Model weights** - Final trained parameters
2. **Tokenizer** - Associated tokenizer
3. **Configuration** - Model config (config.json)
4. **Training arguments** - Hyperparameters used
5. **Model card** - Auto-generated documentation
6. **Checkpoints** - If `save_strategy="steps"` enabled
## Checkpoint Saving
Save intermediate checkpoints during training:
```python
SFTConfig(
output_dir="my-model",
push_to_hub=True,
hub_model_id="username/my-model",
# Checkpoint configuration
save_strategy="steps",
save_steps=100, # Save every 100 steps
save_total_limit=3, # Keep only last 3 checkpoints
)
```
**Benefits:**
- Resume training if job fails
- Compare checkpoint performance
- Use intermediate models
**Checkpoints are pushed to:** `username/my-model` (same repo)
## Authentication Methods
### Method 1: Automatic Token (Recommended)
```python
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
```
Uses your logged-in Hugging Face token automatically.
### Method 2: Explicit Token
```python
"secrets": {"HF_TOKEN": "hf_abc123..."}
```
Provide token explicitly (not recommended for security).
### Method 3: Environment Variable
```python
"env": {"HF_TOKEN": "hf_abc123..."}
```
Pass as regular environment variable (less secure than secrets).
**Always prefer Method 1** for security and convenience.
## Verification Checklist
Before submitting any training job, verify:
- [ ] `push_to_hub=True` in training config
- [ ] `hub_model_id` is specified (format: `username/model-name`)
- [ ] `secrets={"HF_TOKEN": "$HF_TOKEN"}` in job config
- [ ] Repository name doesn't conflict with existing repos
- [ ] You have write access to the target namespace
## Repository Setup
### Automatic Creation
If repository doesn't exist, it's created automatically when first pushing.
### Manual Creation
Create repository before training:
```python
from huggingface_hub import HfApi
api = HfApi()
api.create_repo(
repo_id="username/model-name",
repo_type="model",
private=False, # or True for private repo
)
```
### Repository Naming
**Valid names:**
- `username/my-model`
- `username/model-name`
- `organization/model-name`
**Invalid names:**
- `model-name` (missing username)
- `username/model name` (spaces not allowed)
- `username/MODEL` (uppercase discouraged)
## Troubleshooting
### Error: 401 Unauthorized
**Cause:** HF_TOKEN not provided or invalid
**Solutions:**
1. Verify `secrets={"HF_TOKEN": "$HF_TOKEN"}` in job config
2. Check you're logged in: `huggingface-cli whoami`
3. Re-login: `huggingface-cli login`
### Error: 403 Forbidden
**Cause:** No write access to repository
**Solutions:**
1. Check repository namespace matches your username
2. Verify you're a member of organization (if using org namespace)
3. Check repository isn't private (if accessing org repo)
### Error: Repository not found
**Cause:** Repository doesn't exist and auto-creation failed
**Solutions:**
1. Manually create repository first
2. Check repository name format
3. Verify namespace exists
### Error: Push failed during training
**Cause:** Network issues or Hub unavailable
**Solutions:**
1. Training continues but final push fails
2. Checkpoints may be saved
3. Re-run push manually after job completes
### Issue: Model saved but not visible
**Possible causes:**
1. Repository is private—check https://huggingface.co/username
2. Wrong namespace—verify `hub_model_id` matches login
3. Push still in progress—wait a few minutes
## Manual Push After Training
If training completes but push fails, push manually:
```python
from transformers import AutoModel, AutoTokenizer
# Load from local checkpoint
model = AutoModel.from_pretrained("./output_dir")
tokenizer = AutoTokenizer.from_pretrained("./output_dir")
# Push to Hub
model.push_to_hub("username/model-name", token="hf_abc123...")
tokenizer.push_to_hub("username/model-name", token="hf_abc123...")
```
**Note:** Only possible if job hasn't completed (files still exist).
## Best Practices
1. **Always enable `push_to_hub=True`**
2. **Use checkpoint saving** for long training runs
3. **Verify Hub push** in logs before job completes
4. **Set appropriate `save_total_limit`** to avoid excessive checkpoints
5. **Use descriptive repo names** (e.g., `qwen-capybara-sft` not `model1`)
6. **Add model card** with training details
7. **Tag models** with relevant tags (e.g., `text-generation`, `fine-tuned`)
## Monitoring Push Progress
Check logs for push progress:
```python
hf_jobs("logs", {"job_id": "your-job-id"})
```
**Look for:**
```
Pushing model to username/model-name...
Upload file pytorch_model.bin: 100%
✅ Model pushed successfully
```
## Example: Full Production Setup
```python
# production_train.py
# /// script
# dependencies = ["trl>=0.12.0", "peft>=0.7.0"]
# ///
from datasets import load_dataset
from peft import LoraConfig
from trl import SFTTrainer, SFTConfig
import os
# Verify token is available
assert "HF_TOKEN" in os.environ, "HF_TOKEN not found in environment!"
# Load dataset
dataset = load_dataset("trl-lib/Capybara", split="train")
print(f"✅ Dataset loaded: {len(dataset)} examples")
# Configure with comprehensive Hub settings
config = SFTConfig(
output_dir="qwen-capybara-sft",
# Hub configuration
push_to_hub=True,
hub_model_id="myusername/qwen-capybara-sft",
hub_strategy="checkpoint", # Push checkpoints
# Checkpoint configuration
save_strategy="steps",
save_steps=100,
save_total_limit=3,
# Training settings
num_train_epochs=3,
per_device_train_batch_size=4,
# Logging
logging_steps=10,
logging_first_step=True,
)
# Train with LoRA
trainer = SFTTrainer(
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset,
args=config,
peft_config=LoraConfig(r=16, lora_alpha=32),
)
print("🚀 Starting training...")
trainer.train()
print("💾 Pushing final model to Hub...")
trainer.push_to_hub()
print("✅ Training complete!")
print(f"Model available at: https://huggingface.co/myusername/qwen-capybara-sft")
```
**Submit:**
```python
hf_jobs("uv", {
"script": "production_train.py",
"flavor": "a10g-large",
"timeout": "6h",
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
})
```
## Key Takeaway
**Without `push_to_hub=True` and `secrets={"HF_TOKEN": "$HF_TOKEN"}`, all training results are permanently lost.**
Always verify both are configured before submitting any training job.