SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("redis/model-a-baseline")
sentences = [
'Why do onions make people cry?',
'Why do onions sting?',
'Can people with bipolar have healthy relationships?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
Evaluation
Metrics
Information Retrieval
| Metric |
NanoMSMARCO |
NanoNQ |
| cosine_accuracy@1 |
0.32 |
0.32 |
| cosine_accuracy@3 |
0.56 |
0.54 |
| cosine_accuracy@5 |
0.72 |
0.62 |
| cosine_accuracy@10 |
0.82 |
0.68 |
| cosine_precision@1 |
0.32 |
0.32 |
| cosine_precision@3 |
0.1867 |
0.1933 |
| cosine_precision@5 |
0.144 |
0.132 |
| cosine_precision@10 |
0.082 |
0.072 |
| cosine_recall@1 |
0.32 |
0.31 |
| cosine_recall@3 |
0.56 |
0.53 |
| cosine_recall@5 |
0.72 |
0.6 |
| cosine_recall@10 |
0.82 |
0.66 |
| cosine_ndcg@10 |
0.5574 |
0.4926 |
| cosine_mrr@10 |
0.4747 |
0.4419 |
| cosine_map@100 |
0.482 |
0.4462 |
Nano BEIR
| Metric |
Value |
| cosine_accuracy@1 |
0.32 |
| cosine_accuracy@3 |
0.55 |
| cosine_accuracy@5 |
0.67 |
| cosine_accuracy@10 |
0.75 |
| cosine_precision@1 |
0.32 |
| cosine_precision@3 |
0.19 |
| cosine_precision@5 |
0.138 |
| cosine_precision@10 |
0.077 |
| cosine_recall@1 |
0.315 |
| cosine_recall@3 |
0.545 |
| cosine_recall@5 |
0.66 |
| cosine_recall@10 |
0.74 |
| cosine_ndcg@10 |
0.525 |
| cosine_mrr@10 |
0.4583 |
| cosine_map@100 |
0.4641 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 128
per_device_eval_batch_size: 128
learning_rate: 2e-05
weight_decay: 0.0001
max_steps: 3000
warmup_ratio: 0.1
fp16: True
dataloader_drop_last: True
dataloader_num_workers: 1
dataloader_prefetch_factor: 1
load_best_model_at_end: True
optim: adamw_torch
ddp_find_unused_parameters: False
push_to_hub: True
hub_model_id: redis/model-a-baseline
eval_on_start: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 128
per_device_eval_batch_size: 128
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0001
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 3.0
max_steps: 3000
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: True
dataloader_num_workers: 1
dataloader_prefetch_factor: 1
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
parallelism_config: None
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
project: huggingface
trackio_space_id: trackio
ddp_find_unused_parameters: False
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: True
resume_from_checkpoint: None
hub_model_id: redis/model-a-baseline
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
hub_revision: None
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: no
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: True
use_liger_kernel: False
liger_kernel_config: None
eval_use_gather_object: False
average_tokens_across_devices: True
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
router_mapping: {}
learning_rate_mapping: {}
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
NanoMSMARCO_cosine_ndcg@10 |
NanoNQ_cosine_ndcg@10 |
NanoBEIR_mean_cosine_ndcg@10 |
| 0 |
0 |
- |
0.5972 |
0.5887 |
0.5786 |
0.5836 |
| 0.3556 |
250 |
0.5902 |
0.4140 |
0.5596 |
0.5395 |
0.5495 |
| 0.7112 |
500 |
0.5168 |
0.4000 |
0.5798 |
0.5206 |
0.5502 |
| 1.0669 |
750 |
0.4977 |
0.3934 |
0.5722 |
0.5079 |
0.5401 |
| 1.4225 |
1000 |
0.4825 |
0.3875 |
0.5612 |
0.5129 |
0.5370 |
| 1.7781 |
1250 |
0.4764 |
0.3843 |
0.5734 |
0.5179 |
0.5457 |
| 2.1337 |
1500 |
0.4672 |
0.3821 |
0.5740 |
0.5065 |
0.5402 |
| 2.4893 |
1750 |
0.4612 |
0.3804 |
0.5721 |
0.4950 |
0.5335 |
| 2.8450 |
2000 |
0.4576 |
0.3791 |
0.5588 |
0.4836 |
0.5212 |
| 3.2006 |
2250 |
0.4533 |
0.3775 |
0.5550 |
0.5005 |
0.5278 |
| 3.5562 |
2500 |
0.4491 |
0.3770 |
0.5604 |
0.4919 |
0.5262 |
| 3.9118 |
2750 |
0.4483 |
0.3763 |
0.5569 |
0.4897 |
0.5233 |
| 4.2674 |
3000 |
0.446 |
0.3760 |
0.5574 |
0.4926 |
0.5250 |
Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.2.0
- Transformers: 4.57.3
- PyTorch: 2.9.1+cu128
- Accelerate: 1.12.0
- Datasets: 2.21.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}