diff-storyboard / examples /qwen_image /model_training /full /Qwen-Image-Blockwise-ControlNet-Inpaint.sh
jiaxi2002's picture
Upload folder using huggingface_hub
feb33a0 verified
accelerate launch --config_file examples/qwen_image/model_training/full/accelerate_config.yaml examples/qwen_image/model_training/train.py \
--dataset_base_path data/example_image_dataset \
--dataset_metadata_path data/example_image_dataset/metadata_blockwise_controlnet_inpaint.csv \
--data_file_keys "image,blockwise_controlnet_image,blockwise_controlnet_inpaint_mask" \
--max_pixels 1048576 \
--dataset_repeat 50 \
--model_id_with_origin_paths "Qwen/Qwen-Image:transformer/diffusion_pytorch_model*.safetensors,Qwen/Qwen-Image:text_encoder/model*.safetensors,Qwen/Qwen-Image:vae/diffusion_pytorch_model.safetensors,DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Inpaint:model.safetensors" \
--learning_rate 1e-4 \
--num_epochs 2 \
--remove_prefix_in_ckpt "pipe.blockwise_controlnet.models.0." \
--output_path "./models/train/Qwen-Image-Blockwise-ControlNet-Inpaint_full" \
--trainable_models "blockwise_controlnet" \
--extra_inputs "blockwise_controlnet_image,blockwise_controlnet_inpaint_mask" \
--use_gradient_checkpointing \
--find_unused_parameters
# If you want to pre-train a Inpaint Blockwise ControlNet from scratch,
# please run the following script to first generate the initialized model weights file,
# and then start training with a high learning rate (1e-3).
# python examples/qwen_image/model_training/scripts/Qwen-Image-Blockwise-ControlNet-Inpaint-Initialize.py
# accelerate launch --config_file examples/qwen_image/model_training/full/accelerate_config.yaml examples/qwen_image/model_training/train.py \
# --dataset_base_path data/example_image_dataset \
# --dataset_metadata_path data/example_image_dataset/metadata_blockwise_controlnet_inpaint.csv \
# --data_file_keys "image,blockwise_controlnet_image,blockwise_controlnet_inpaint_mask" \
# --max_pixels 1048576 \
# --dataset_repeat 50 \
# --model_id_with_origin_paths "Qwen/Qwen-Image:transformer/diffusion_pytorch_model*.safetensors,Qwen/Qwen-Image:text_encoder/model*.safetensors,Qwen/Qwen-Image:vae/diffusion_pytorch_model.safetensors" \
# --model_paths '["models/blockwise_controlnet_inpaint.safetensors"]' \
# --learning_rate 1e-3 \
# --num_epochs 2 \
# --remove_prefix_in_ckpt "pipe.blockwise_controlnet.models.0." \
# --output_path "./models/train/Qwen-Image-Blockwise-ControlNet-Inpaint_full" \
# --trainable_models "blockwise_controlnet" \
# --extra_inputs "blockwise_controlnet_image,blockwise_controlnet_inpaint_mask" \
# --use_gradient_checkpointing \
# --find_unused_parameters