accelerate launch --config_file examples/qwen_image/model_training/full/accelerate_config.yaml examples/qwen_image/model_training/train.py \ --dataset_base_path data/example_image_dataset \ --dataset_metadata_path data/example_image_dataset/metadata_blockwise_controlnet_inpaint.csv \ --data_file_keys "image,blockwise_controlnet_image,blockwise_controlnet_inpaint_mask" \ --max_pixels 1048576 \ --dataset_repeat 50 \ --model_id_with_origin_paths "Qwen/Qwen-Image:transformer/diffusion_pytorch_model*.safetensors,Qwen/Qwen-Image:text_encoder/model*.safetensors,Qwen/Qwen-Image:vae/diffusion_pytorch_model.safetensors,DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Inpaint:model.safetensors" \ --learning_rate 1e-4 \ --num_epochs 2 \ --remove_prefix_in_ckpt "pipe.blockwise_controlnet.models.0." \ --output_path "./models/train/Qwen-Image-Blockwise-ControlNet-Inpaint_full" \ --trainable_models "blockwise_controlnet" \ --extra_inputs "blockwise_controlnet_image,blockwise_controlnet_inpaint_mask" \ --use_gradient_checkpointing \ --find_unused_parameters # If you want to pre-train a Inpaint Blockwise ControlNet from scratch, # please run the following script to first generate the initialized model weights file, # and then start training with a high learning rate (1e-3). # python examples/qwen_image/model_training/scripts/Qwen-Image-Blockwise-ControlNet-Inpaint-Initialize.py # accelerate launch --config_file examples/qwen_image/model_training/full/accelerate_config.yaml examples/qwen_image/model_training/train.py \ # --dataset_base_path data/example_image_dataset \ # --dataset_metadata_path data/example_image_dataset/metadata_blockwise_controlnet_inpaint.csv \ # --data_file_keys "image,blockwise_controlnet_image,blockwise_controlnet_inpaint_mask" \ # --max_pixels 1048576 \ # --dataset_repeat 50 \ # --model_id_with_origin_paths "Qwen/Qwen-Image:transformer/diffusion_pytorch_model*.safetensors,Qwen/Qwen-Image:text_encoder/model*.safetensors,Qwen/Qwen-Image:vae/diffusion_pytorch_model.safetensors" \ # --model_paths '["models/blockwise_controlnet_inpaint.safetensors"]' \ # --learning_rate 1e-3 \ # --num_epochs 2 \ # --remove_prefix_in_ckpt "pipe.blockwise_controlnet.models.0." \ # --output_path "./models/train/Qwen-Image-Blockwise-ControlNet-Inpaint_full" \ # --trainable_models "blockwise_controlnet" \ # --extra_inputs "blockwise_controlnet_image,blockwise_controlnet_inpaint_mask" \ # --use_gradient_checkpointing \ # --find_unused_parameters