diff-storyboard / diffsynth /trainers /unified_dataset.py
jiaxi2002's picture
Upload folder using huggingface_hub
feb33a0 verified
import torch, torchvision, imageio, os, json, pandas
import imageio.v3 as iio
from PIL import Image
class DataProcessingPipeline:
def __init__(self, operators=None):
self.operators: list[DataProcessingOperator] = [] if operators is None else operators
def __call__(self, data):
for operator in self.operators:
data = operator(data)
return data
def __rshift__(self, pipe):
if isinstance(pipe, DataProcessingOperator):
pipe = DataProcessingPipeline([pipe])
return DataProcessingPipeline(self.operators + pipe.operators)
class DataProcessingOperator:
def __call__(self, data):
raise NotImplementedError("DataProcessingOperator cannot be called directly.")
def __rshift__(self, pipe):
if isinstance(pipe, DataProcessingOperator):
pipe = DataProcessingPipeline([pipe])
return DataProcessingPipeline([self]).__rshift__(pipe)
class DataProcessingOperatorRaw(DataProcessingOperator):
def __call__(self, data):
return data
class ToInt(DataProcessingOperator):
def __call__(self, data):
return int(data)
class ToFloat(DataProcessingOperator):
def __call__(self, data):
return float(data)
class ToStr(DataProcessingOperator):
def __init__(self, none_value=""):
self.none_value = none_value
def __call__(self, data):
if data is None: data = self.none_value
return str(data)
class LoadImage(DataProcessingOperator):
def __init__(self, convert_RGB=True):
self.convert_RGB = convert_RGB
def __call__(self, data: str):
image = Image.open(data)
if self.convert_RGB: image = image.convert("RGB")
return image
class ImageCropAndResize(DataProcessingOperator):
def __init__(self, height, width, max_pixels, height_division_factor, width_division_factor):
self.height = height
self.width = width
self.max_pixels = max_pixels
self.height_division_factor = height_division_factor
self.width_division_factor = width_division_factor
def crop_and_resize(self, image, target_height, target_width):
width, height = image.size
scale = max(target_width / width, target_height / height)
image = torchvision.transforms.functional.resize(
image,
(round(height*scale), round(width*scale)),
interpolation=torchvision.transforms.InterpolationMode.BILINEAR
)
image = torchvision.transforms.functional.center_crop(image, (target_height, target_width))
return image
def get_height_width(self, image):
if self.height is None or self.width is None:
width, height = image.size
if width * height > self.max_pixels:
scale = (width * height / self.max_pixels) ** 0.5
height, width = int(height / scale), int(width / scale)
height = height // self.height_division_factor * self.height_division_factor
width = width // self.width_division_factor * self.width_division_factor
else:
height, width = self.height, self.width
return height, width
def __call__(self, data: Image.Image):
image = self.crop_and_resize(data, *self.get_height_width(data))
return image
class ToList(DataProcessingOperator):
def __call__(self, data):
return [data]
class LoadVideo(DataProcessingOperator):
def __init__(self, num_frames=81, time_division_factor=4, time_division_remainder=1, frame_processor=lambda x: x):
self.num_frames = num_frames
self.time_division_factor = time_division_factor
self.time_division_remainder = time_division_remainder
# frame_processor is build in the video loader for high efficiency.
self.frame_processor = frame_processor
def get_num_frames(self, reader):
num_frames = self.num_frames
if int(reader.count_frames()) < num_frames:
num_frames = int(reader.count_frames())
while num_frames > 1 and num_frames % self.time_division_factor != self.time_division_remainder:
num_frames -= 1
return num_frames
def __call__(self, data: str):
reader = imageio.get_reader(data)
num_frames = self.get_num_frames(reader)
frames = []
for frame_id in range(num_frames):
frame = reader.get_data(frame_id)
frame = Image.fromarray(frame)
frame = self.frame_processor(frame)
frames.append(frame)
reader.close()
return frames
class SequencialProcess(DataProcessingOperator):
def __init__(self, operator=lambda x: x):
self.operator = operator
def __call__(self, data):
return [self.operator(i) for i in data]
class LoadGIF(DataProcessingOperator):
def __init__(self, num_frames=81, time_division_factor=4, time_division_remainder=1, frame_processor=lambda x: x):
self.num_frames = num_frames
self.time_division_factor = time_division_factor
self.time_division_remainder = time_division_remainder
# frame_processor is build in the video loader for high efficiency.
self.frame_processor = frame_processor
def get_num_frames(self, path):
num_frames = self.num_frames
images = iio.imread(path, mode="RGB")
if len(images) < num_frames:
num_frames = len(images)
while num_frames > 1 and num_frames % self.time_division_factor != self.time_division_remainder:
num_frames -= 1
return num_frames
def __call__(self, data: str):
num_frames = self.get_num_frames(data)
frames = []
images = iio.imread(data, mode="RGB")
for img in images:
frame = Image.fromarray(img)
frame = self.frame_processor(frame)
frames.append(frame)
if len(frames) >= num_frames:
break
return frames
class RouteByExtensionName(DataProcessingOperator):
def __init__(self, operator_map):
self.operator_map = operator_map
def __call__(self, data: str):
file_ext_name = data.split(".")[-1].lower()
for ext_names, operator in self.operator_map:
if ext_names is None or file_ext_name in ext_names:
return operator(data)
raise ValueError(f"Unsupported file: {data}")
class RouteByType(DataProcessingOperator):
def __init__(self, operator_map):
self.operator_map = operator_map
def __call__(self, data):
for dtype, operator in self.operator_map:
if dtype is None or isinstance(data, dtype):
return operator(data)
raise ValueError(f"Unsupported data: {data}")
class LoadTorchPickle(DataProcessingOperator):
def __init__(self, map_location="cpu"):
self.map_location = map_location
def __call__(self, data):
return torch.load(data, map_location=self.map_location, weights_only=False)
class ToAbsolutePath(DataProcessingOperator):
def __init__(self, base_path=""):
self.base_path = base_path
def __call__(self, data):
return os.path.join(self.base_path, data)
class LoadAudio(DataProcessingOperator):
def __init__(self, sr=16000):
self.sr = sr
def __call__(self, data: str):
import librosa
input_audio, sample_rate = librosa.load(data, sr=self.sr)
return input_audio
class UnifiedDataset(torch.utils.data.Dataset):
def __init__(
self,
base_path=None, metadata_path=None,
repeat=1,
data_file_keys=tuple(),
main_data_operator=lambda x: x,
special_operator_map=None,
default_caption=None,):
self.base_path = base_path
self.default_caption = default_caption
self.metadata_path = metadata_path
self.repeat = repeat
self.data_file_keys = data_file_keys
self.main_data_operator = main_data_operator
self.cached_data_operator = LoadTorchPickle()
self.special_operator_map = {} if special_operator_map is None else special_operator_map
self.data = []
self.cached_data = []
self.load_from_cache = metadata_path is None
self.load_metadata(metadata_path)
@staticmethod
def default_image_operator(
base_path="",
max_pixels=1920*1080, height=None, width=None,
height_division_factor=16, width_division_factor=16,
):
return RouteByType(operator_map=[
(str, ToAbsolutePath(base_path) >> LoadImage() >> ImageCropAndResize(height, width, max_pixels, height_division_factor, width_division_factor)),
(list, SequencialProcess(ToAbsolutePath(base_path) >> LoadImage() >> ImageCropAndResize(height, width, max_pixels, height_division_factor, width_division_factor))),
])
@staticmethod
def default_video_operator(
base_path="",
max_pixels=1920*1080, height=None, width=None,
height_division_factor=16, width_division_factor=16,
num_frames=81, time_division_factor=4, time_division_remainder=1,
):
return RouteByType(operator_map=[
(str, ToAbsolutePath(base_path) >> RouteByExtensionName(operator_map=[
(("jpg", "jpeg", "png", "webp"), LoadImage() >> ImageCropAndResize(height, width, max_pixels, height_division_factor, width_division_factor) >> ToList()),
(("gif",), LoadGIF(
num_frames, time_division_factor, time_division_remainder,
frame_processor=ImageCropAndResize(height, width, max_pixels, height_division_factor, width_division_factor),
)),
(("mp4", "avi", "mov", "wmv", "mkv", "flv", "webm"), LoadVideo(
num_frames, time_division_factor, time_division_remainder,
frame_processor=ImageCropAndResize(height, width, max_pixels, height_division_factor, width_division_factor),
)),
])),
])
def search_for_cached_data_files(self, path):
for file_name in os.listdir(path):
subpath = os.path.join(path, file_name)
if os.path.isdir(subpath):
self.search_for_cached_data_files(subpath)
elif subpath.endswith(".pth"):
self.cached_data.append(subpath)
def load_metadata(self, metadata_path):
if metadata_path is None:
print("No metadata_path. Searching for cached data files.")
self.search_for_cached_data_files(self.base_path)
print(f"{len(self.cached_data)} cached data files found.")
elif metadata_path.endswith(".json"):
with open(metadata_path, "r") as f:
metadata = json.load(f)
self.data = metadata
elif metadata_path.endswith(".jsonl"):
metadata = []
with open(metadata_path, 'r') as f:
for line in f:
metadata.append(json.loads(line.strip()))
self.data = metadata
elif metadata_path.endswith(".txt"):
with open(metadata_path, "r") as f:
lines = f.readlines()
# self.data_file_keys: image, kontext_images 1x2
# lines nx2
self.data = []
for line in lines:
items = line.strip().split("\t")
data_entry = {}
for key, item in zip(self.data_file_keys, items):
data_entry[key] = item
data_entry["prompt"] = self.default_caption
self.data.append(data_entry)
else:
metadata = pandas.read_csv(metadata_path)
self.data = [metadata.iloc[i].to_dict() for i in range(len(metadata))]
def __getitem__(self, data_id):
if self.load_from_cache:
data = self.cached_data[data_id % len(self.cached_data)]
data = self.cached_data_operator(data)
else:
data = self.data[data_id % len(self.data)].copy()
for key in self.data_file_keys:
if key in data:
if key in self.special_operator_map:
data[key] = self.special_operator_map[key](data[key])
elif key == "prompt":
pass
elif key in self.data_file_keys:
data[key] = self.main_data_operator(data[key])
return data
def __len__(self):
if self.load_from_cache:
return len(self.cached_data) * self.repeat
else:
return len(self.data) * self.repeat
def check_data_equal(self, data1, data2):
# Debug only
if len(data1) != len(data2):
return False
for k in data1:
if data1[k] != data2[k]:
return False
return True