File size: 13,141 Bytes
feb33a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import torch, torchvision, imageio, os, json, pandas
import imageio.v3 as iio
from PIL import Image



class DataProcessingPipeline:
    def __init__(self, operators=None):
        self.operators: list[DataProcessingOperator] = [] if operators is None else operators
        
    def __call__(self, data):
        for operator in self.operators:
            data = operator(data)
        return data
    
    def __rshift__(self, pipe):
        if isinstance(pipe, DataProcessingOperator):
            pipe = DataProcessingPipeline([pipe])
        return DataProcessingPipeline(self.operators + pipe.operators)



class DataProcessingOperator:
    def __call__(self, data):
        raise NotImplementedError("DataProcessingOperator cannot be called directly.")
    
    def __rshift__(self, pipe):
        if isinstance(pipe, DataProcessingOperator):
            pipe = DataProcessingPipeline([pipe])
        return DataProcessingPipeline([self]).__rshift__(pipe)



class DataProcessingOperatorRaw(DataProcessingOperator):
    def __call__(self, data):
        return data



class ToInt(DataProcessingOperator):
    def __call__(self, data):
        return int(data)



class ToFloat(DataProcessingOperator):
    def __call__(self, data):
        return float(data)



class ToStr(DataProcessingOperator):
    def __init__(self, none_value=""):
        self.none_value = none_value
    
    def __call__(self, data):
        if data is None: data = self.none_value
        return str(data)



class LoadImage(DataProcessingOperator):
    def __init__(self, convert_RGB=True):
        self.convert_RGB = convert_RGB
    
    def __call__(self, data: str):
        image = Image.open(data)
        if self.convert_RGB: image = image.convert("RGB")
        return image



class ImageCropAndResize(DataProcessingOperator):
    def __init__(self, height, width, max_pixels, height_division_factor, width_division_factor):
        self.height = height
        self.width = width
        self.max_pixels = max_pixels
        self.height_division_factor = height_division_factor
        self.width_division_factor = width_division_factor

    def crop_and_resize(self, image, target_height, target_width):
        width, height = image.size
        scale = max(target_width / width, target_height / height)
        image = torchvision.transforms.functional.resize(
            image,
            (round(height*scale), round(width*scale)),
            interpolation=torchvision.transforms.InterpolationMode.BILINEAR
        )
        image = torchvision.transforms.functional.center_crop(image, (target_height, target_width))
        return image
    
    def get_height_width(self, image):
        if self.height is None or self.width is None:
            width, height = image.size
            if width * height > self.max_pixels:
                scale = (width * height / self.max_pixels) ** 0.5
                height, width = int(height / scale), int(width / scale)
            height = height // self.height_division_factor * self.height_division_factor
            width = width // self.width_division_factor * self.width_division_factor
        else:
            height, width = self.height, self.width
        return height, width
    
    
    def __call__(self, data: Image.Image):
        image = self.crop_and_resize(data, *self.get_height_width(data))
        return image



class ToList(DataProcessingOperator):
    def __call__(self, data):
        return [data]
    


class LoadVideo(DataProcessingOperator):
    def __init__(self, num_frames=81, time_division_factor=4, time_division_remainder=1, frame_processor=lambda x: x):
        self.num_frames = num_frames
        self.time_division_factor = time_division_factor
        self.time_division_remainder = time_division_remainder
        # frame_processor is build in the video loader for high efficiency.
        self.frame_processor = frame_processor
        
    def get_num_frames(self, reader):
        num_frames = self.num_frames
        if int(reader.count_frames()) < num_frames:
            num_frames = int(reader.count_frames())
            while num_frames > 1 and num_frames % self.time_division_factor != self.time_division_remainder:
                num_frames -= 1
        return num_frames
        
    def __call__(self, data: str):
        reader = imageio.get_reader(data)
        num_frames = self.get_num_frames(reader)
        frames = []
        for frame_id in range(num_frames):
            frame = reader.get_data(frame_id)
            frame = Image.fromarray(frame)
            frame = self.frame_processor(frame)
            frames.append(frame)
        reader.close()
        return frames



class SequencialProcess(DataProcessingOperator):
    def __init__(self, operator=lambda x: x):
        self.operator = operator
        
    def __call__(self, data):
        return [self.operator(i) for i in data]



class LoadGIF(DataProcessingOperator):
    def __init__(self, num_frames=81, time_division_factor=4, time_division_remainder=1, frame_processor=lambda x: x):
        self.num_frames = num_frames
        self.time_division_factor = time_division_factor
        self.time_division_remainder = time_division_remainder
        # frame_processor is build in the video loader for high efficiency.
        self.frame_processor = frame_processor
        
    def get_num_frames(self, path):
        num_frames = self.num_frames
        images = iio.imread(path, mode="RGB")
        if len(images) < num_frames:
            num_frames = len(images)
            while num_frames > 1 and num_frames % self.time_division_factor != self.time_division_remainder:
                num_frames -= 1
        return num_frames
        
    def __call__(self, data: str):
        num_frames = self.get_num_frames(data)
        frames = []
        images = iio.imread(data, mode="RGB")
        for img in images:
            frame = Image.fromarray(img)
            frame = self.frame_processor(frame)
            frames.append(frame)
            if len(frames) >= num_frames:
                break
        return frames
    


class RouteByExtensionName(DataProcessingOperator):
    def __init__(self, operator_map):
        self.operator_map = operator_map
        
    def __call__(self, data: str):
        file_ext_name = data.split(".")[-1].lower()
        for ext_names, operator in self.operator_map:
            if ext_names is None or file_ext_name in ext_names:
                return operator(data)
        raise ValueError(f"Unsupported file: {data}")



class RouteByType(DataProcessingOperator):
    def __init__(self, operator_map):
        self.operator_map = operator_map
        
    def __call__(self, data):
        for dtype, operator in self.operator_map:
            if dtype is None or isinstance(data, dtype):
                return operator(data)
        raise ValueError(f"Unsupported data: {data}")



class LoadTorchPickle(DataProcessingOperator):
    def __init__(self, map_location="cpu"):
        self.map_location = map_location
        
    def __call__(self, data):
        return torch.load(data, map_location=self.map_location, weights_only=False)



class ToAbsolutePath(DataProcessingOperator):
    def __init__(self, base_path=""):
        self.base_path = base_path
        
    def __call__(self, data):
        return os.path.join(self.base_path, data)

class LoadAudio(DataProcessingOperator):
    def __init__(self, sr=16000):
        self.sr = sr
    def __call__(self, data: str):
        import librosa
        input_audio, sample_rate = librosa.load(data, sr=self.sr)
        return input_audio


class UnifiedDataset(torch.utils.data.Dataset):
    def __init__(
        self,
        base_path=None, metadata_path=None,
        repeat=1,
        data_file_keys=tuple(),
        main_data_operator=lambda x: x,
        special_operator_map=None,
        default_caption=None,):
        self.base_path = base_path
        self.default_caption = default_caption
        self.metadata_path = metadata_path
        self.repeat = repeat
        self.data_file_keys = data_file_keys
        self.main_data_operator = main_data_operator
        self.cached_data_operator = LoadTorchPickle()
        self.special_operator_map = {} if special_operator_map is None else special_operator_map
        self.data = []
        self.cached_data = []
        self.load_from_cache = metadata_path is None
        self.load_metadata(metadata_path)
    
    @staticmethod
    def default_image_operator(
        base_path="",
        max_pixels=1920*1080, height=None, width=None,
        height_division_factor=16, width_division_factor=16,
    ):
        return RouteByType(operator_map=[
            (str, ToAbsolutePath(base_path) >> LoadImage() >> ImageCropAndResize(height, width, max_pixels, height_division_factor, width_division_factor)),
            (list, SequencialProcess(ToAbsolutePath(base_path) >> LoadImage() >> ImageCropAndResize(height, width, max_pixels, height_division_factor, width_division_factor))),
        ])
    
    @staticmethod
    def default_video_operator(
        base_path="",
        max_pixels=1920*1080, height=None, width=None,
        height_division_factor=16, width_division_factor=16,
        num_frames=81, time_division_factor=4, time_division_remainder=1,
    ):
        return RouteByType(operator_map=[
            (str, ToAbsolutePath(base_path) >> RouteByExtensionName(operator_map=[
                (("jpg", "jpeg", "png", "webp"), LoadImage() >> ImageCropAndResize(height, width, max_pixels, height_division_factor, width_division_factor) >> ToList()),
                (("gif",), LoadGIF(
                    num_frames, time_division_factor, time_division_remainder,
                    frame_processor=ImageCropAndResize(height, width, max_pixels, height_division_factor, width_division_factor),
                )),
                (("mp4", "avi", "mov", "wmv", "mkv", "flv", "webm"), LoadVideo(
                    num_frames, time_division_factor, time_division_remainder,
                    frame_processor=ImageCropAndResize(height, width, max_pixels, height_division_factor, width_division_factor),
                )),
            ])),
        ])
        
    def search_for_cached_data_files(self, path):
        for file_name in os.listdir(path):
            subpath = os.path.join(path, file_name)
            if os.path.isdir(subpath):
                self.search_for_cached_data_files(subpath)
            elif subpath.endswith(".pth"):
                self.cached_data.append(subpath)
    
    def load_metadata(self, metadata_path):
        if metadata_path is None:
            print("No metadata_path. Searching for cached data files.")
            self.search_for_cached_data_files(self.base_path)
            print(f"{len(self.cached_data)} cached data files found.")
        elif metadata_path.endswith(".json"):
            with open(metadata_path, "r") as f:
                metadata = json.load(f)
            self.data = metadata
        elif metadata_path.endswith(".jsonl"):
            metadata = []
            with open(metadata_path, 'r') as f:
                for line in f:
                    metadata.append(json.loads(line.strip()))
            self.data = metadata
        elif metadata_path.endswith(".txt"):
            with open(metadata_path, "r") as f:
                lines = f.readlines()
            # self.data_file_keys: image, kontext_images 1x2
            # lines nx2
            self.data = []
            for line in lines:
                items = line.strip().split("\t")
                data_entry = {}
                for key, item in zip(self.data_file_keys, items):
                    data_entry[key] = item
                data_entry["prompt"] = self.default_caption
                
                self.data.append(data_entry)
                
        else:
            metadata = pandas.read_csv(metadata_path)
            self.data = [metadata.iloc[i].to_dict() for i in range(len(metadata))]

    def __getitem__(self, data_id):
        if self.load_from_cache:
            data = self.cached_data[data_id % len(self.cached_data)]
            data = self.cached_data_operator(data)
        else:
            data = self.data[data_id % len(self.data)].copy()
            for key in self.data_file_keys:
                if key in data:
                    if key in self.special_operator_map:
                        data[key] = self.special_operator_map[key](data[key])
                    elif key == "prompt":
                        pass
                    elif key in self.data_file_keys:
                        data[key] = self.main_data_operator(data[key]) 
        return data

    def __len__(self):
        if self.load_from_cache:
            return len(self.cached_data) * self.repeat
        else:
            return len(self.data) * self.repeat
        
    def check_data_equal(self, data1, data2):
        # Debug only
        if len(data1) != len(data2):
            return False
        for k in data1:
            if data1[k] != data2[k]:
                return False
        return True