| from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig, ControlNetInput | |
| from PIL import Image | |
| import torch | |
| from modelscope import dataset_snapshot_download | |
| pipe = QwenImagePipeline.from_pretrained( | |
| torch_dtype=torch.bfloat16, | |
| device="cuda", | |
| model_configs=[ | |
| ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"), | |
| ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"), | |
| ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"), | |
| ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Canny", origin_file_pattern="model.safetensors"), | |
| ], | |
| tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"), | |
| ) | |
| dataset_snapshot_download( | |
| dataset_id="DiffSynth-Studio/example_image_dataset", | |
| local_dir="./data/example_image_dataset", | |
| allow_file_pattern="canny/image_1.jpg" | |
| ) | |
| controlnet_image = Image.open("data/example_image_dataset/canny/image_1.jpg").resize((1328, 1328)) | |
| prompt = "一只小狗,毛发光洁柔顺,眼神灵动,背景是樱花纷飞的春日庭院,唯美温馨。" | |
| image = pipe( | |
| prompt, seed=0, | |
| blockwise_controlnet_inputs=[ControlNetInput(image=controlnet_image)] | |
| ) | |
| image.save("image.jpg") | |