from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig, ControlNetInput from PIL import Image import torch from modelscope import dataset_snapshot_download pipe = QwenImagePipeline.from_pretrained( torch_dtype=torch.bfloat16, device="cuda", model_configs=[ ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"), ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"), ModelConfig(model_id="DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Canny", origin_file_pattern="model.safetensors"), ], tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"), ) dataset_snapshot_download( dataset_id="DiffSynth-Studio/example_image_dataset", local_dir="./data/example_image_dataset", allow_file_pattern="canny/image_1.jpg" ) controlnet_image = Image.open("data/example_image_dataset/canny/image_1.jpg").resize((1328, 1328)) prompt = "一只小狗,毛发光洁柔顺,眼神灵动,背景是樱花纷飞的春日庭院,唯美温馨。" image = pipe( prompt, seed=0, blockwise_controlnet_inputs=[ControlNetInput(image=controlnet_image)] ) image.save("image.jpg")