The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
minimal_data_QM9_QMUGS dataset
This dataset is used to enable simple experiments with our orbital-free density functional theory code from https://github.com/sciai-lab/structures25.
Dataset 1: QM9_perturbed_fock
This dataset contains a small subset of QM9 molecules.
minimal_data_QM9_QMugs/
├── QM9_perturbed_fock/
│ ├── dataset_statistics/
│ │ ├── dataset_statistics_labels_local_frames_global_symmetric_natrep_e_kin_plus_xc.zarr
│ │ └── dataset_statistics_labels_no_basis_transforms_e_kin_plus_xc.zarr
│ ├── labels/
│ │ ├── 0000825.zarr.zip
│ │ └── ...
│ ├── labels_local_frames_global_symmetric_natrep/
│ │ ├── 0000825.zarr.zip
│ │ └── ...
│ ├── split.pkl
│ └── split.yaml
└── QMUGS_perturbed_fock/
├── dataset_statistics/
│ ├── dataset_statistics_labels_local_frames_global_symmetric_natrep_e_kin_plus_xc.zarr
│ └── dataset_statistics_labels_no_basis_transforms_e_kin_plus_xc.zarr
├── labels/
│ ├── 0342979.zarr.zip
│ └── ...
├── labels_local_frames_global_symmetric_natrep/
│ ├── 0342979.zarr.zip
│ └── ...
├── split.pkl
└── split.yaml
Description folder:
dataset_statistics: The dataset statistics contain information about the statistics of the energies, coefficients and gradients of the data. These are used for normalization techniques inside the model, and intial guesses of the density. They are loaded once at model orSADGuesserinitialization. For each basis transform, the statistics will vary which is why each basis transformations gets its own directory. Thedataset_statistics_labels_local_frames_global_symmetric_natrep_e_kin_plus_xc.zarrstatistics used for the model, while thedataset_statistics_labels_no_basis_transforms_e_kin_plus_xc.zarrstatistics are used for theSADGuesser.labels: The untransformed label zarr files. These contain all data necessary for model training as well as OFDFT evaluations.labels_local_frames_global_symmetric_natrep: The transformed label zarr files. The transformation is applied to all values in thespatialgroup according to their representation.split.pkl: The split file, defining which label files belong totrain,valandtestsplit.split.yaml: The same split file inyamlformat, not used by the code but for humans to parse quickly.
Internal structure .zarr file (e.g., 0000825.zarr.zip)
geometry and of_labels are used during training and density optimization, while ks_labels is there to easily compare against Kohn-Sham energies but is not used in the usual workflows.
>>> print(zarr_store.tree())
/
├── geometry
│ ├── atom_pos (13, 3) float64
│ ├── atomic_numbers (13,) uint8
│ └── mol_id () <U11
├── ks_labels
│ ├── basis () <U12
│ └── energies
│ ├── e_electron (35,) float64
│ ├── e_ext (35,) float64
│ ├── e_hartree (35,) float64
│ ├── e_kin (35,) float64
│ ├── e_nuc_nuc (35,) float64
│ ├── e_tot (35,) float64
│ ├── e_xc (35,) float64
│ └── has_energy_label (35,) bool
└── of_labels
├── basis () <U96
├── energies
│ ├── e_electron (35,) float64
│ ├── e_ext (35,) float64
│ ├── e_ext_mod (35,) float64
│ ├── e_hartree (35,) float64
│ ├── e_kin (35,) float64
│ ├── e_kin_minus_apbe (35,) float64
│ ├── e_kin_plus_xc (35,) float64
│ ├── e_kinapbe (35,) float64
│ ├── e_tot (35,) float64
│ └── e_xc (35,) float64
├── n_scf_steps () int64
└── spatial
├── basis_integrals (35, 904) float64
├── coeffs (35, 904) float64
├── dual_basis_integrals (35, 904) float64
├── grad_ext (35, 904) float64
├── grad_hartree (35, 904) float64
├── grad_kin (35, 904) float64
├── grad_kin_minus_apbe (35, 904) float64
├── grad_kin_plus_xc (35, 904) float64
├── grad_kinapbe (35, 904) float64
├── grad_tot (35, 904) float64
└── grad_xc (35, 904) float64
Internal structure dataset_statistics_labels_local_frames_global_symmetric_natrep_e_kin_plus_xc.zarr
The dataset statistcs are split into multiple weigher_keys like constant or ground_state_only. This is because for some applications we want to filter, mainly which SCF iterations of our data we want to include. For example, for a good ground state prediction, only the ground state coefficients matter.
>>> print(dataset.tree())
/
├── constant
│ └── initial_guess_delta
│ ├── abs_max (477,) float64
│ ├── mean (477,) float64
│ └── std (477,) float64
├── ground_state_only
│ ├── atom_ref_atom_type_bias (5,) float64
│ ├── atom_ref_energy_only_atom_type_bias (5,) float64
│ ├── atom_ref_energy_only_global_bias () float64
│ ├── atom_ref_global_bias () float64
│ ├── coeffs
│ │ ├── abs_max (477,) float64
│ │ ├── mean (477,) float64
│ │ └── std (477,) float64
│ ├── energy_minus_atom_ref
│ │ ├── abs_max () float64
│ │ ├── mean () float64
│ │ └── std () float64
│ ├── energy_minus_scalar_atom_ref
│ │ ├── abs_max () float64
│ │ ├── mean () float64
│ │ └── std () float64
│ ├── gradient_label
│ │ ├── abs_max (477,) float64
│ │ ├── mean (477,) float64
│ │ └── std (477,) float64
│ ├── gradient_max_after_atom_ref (477,) float64
│ ├── gradient_max_after_scalar_atom_ref (477,) float64
│ ├── scalar_atom_ref_atom_type_bias (5,) float64
│ └── scalar_atom_ref_global_bias () float64
├── has_energy_label
│ ├── atom_ref_atom_type_bias (5,) float64
│ ├── atom_ref_energy_only_atom_type_bias (5,) float64
│ ├── atom_ref_energy_only_global_bias () float64
│ ├── atom_ref_global_bias () float64
│ ├── coeffs
│ │ ├── abs_max (477,) float64
│ │ ├── mean (477,) float64
│ │ └── std (477,) float64
│ ├── energy_minus_atom_ref
│ │ ├── abs_max () float64
│ │ ├── mean () float64
│ │ └── std () float64
│ ├── energy_minus_scalar_atom_ref
│ │ ├── abs_max () float64
│ │ ├── mean () float64
│ │ └── std () float64
│ ├── gradient_label
│ │ ├── abs_max (477,) float64
│ │ ├── mean (477,) float64
│ │ └── std (477,) float64
│ ├── gradient_max_after_atom_ref (477,) float64
│ ├── gradient_max_after_scalar_atom_ref (477,) float64
│ ├── scalar_atom_ref_atom_type_bias (5,) float64
│ └── scalar_atom_ref_global_bias () float64
├── initial_guess_only
│ └── initial_guess_delta
│ ├── abs_max (477,) float64
│ ├── mean (477,) float64
│ └── std (477,) float64
├── min_scf_iteration_3
│ ├── atom_ref_atom_type_bias (5,) float64
│ ├── atom_ref_energy_only_atom_type_bias (5,) float64
│ ├── atom_ref_energy_only_global_bias () float64
│ ├── atom_ref_global_bias () float64
│ ├── coeffs
│ │ ├── abs_max (477,) float64
│ │ ├── mean (477,) float64
│ │ └── std (477,) float64
│ ├── energy_minus_atom_ref
│ │ ├── abs_max () float64
│ │ ├── mean () float64
│ │ └── std () float64
│ ├── energy_minus_scalar_atom_ref
│ │ ├── abs_max () float64
│ │ ├── mean () float64
│ │ └── std () float64
│ ├── gradient_label
│ │ ├── abs_max (477,) float64
│ │ ├── mean (477,) float64
│ │ └── std (477,) float64
│ ├── gradient_max_after_atom_ref (477,) float64
│ ├── gradient_max_after_scalar_atom_ref (477,) float64
│ ├── initial_guess_delta
│ │ ├── abs_max (477,) float64
│ │ ├── mean (477,) float64
│ │ └── std (477,) float64
│ ├── scalar_atom_ref_atom_type_bias (5,) float64
│ └── scalar_atom_ref_global_bias () float64
└── min_scf_iteration_5
├── atom_ref_atom_type_bias (5,) float64
├── atom_ref_energy_only_atom_type_bias (5,) float64
├── atom_ref_energy_only_global_bias () float64
├── atom_ref_global_bias () float64
├── coeffs
│ ├── abs_max (477,) float64
│ ├── mean (477,) float64
│ └── std (477,) float64
├── energy_minus_atom_ref
│ ├── abs_max () float64
│ ├── mean () float64
│ └── std () float64
├── energy_minus_scalar_atom_ref
│ ├── abs_max () float64
│ ├── mean () float64
│ └── std () float64
├── gradient_label
│ ├── abs_max (477,) float64
│ ├── mean (477,) float64
│ └── std (477,) float64
├── gradient_max_after_atom_ref (477,) float64
├── gradient_max_after_scalar_atom_ref (477,) float64
├── scalar_atom_ref_atom_type_bias (5,) float64
└── scalar_atom_ref_global_bias () float64
Dataset 2: QMUGS_perturbed_fock
This dataset contains a small subset of QMugs molecules, which we use to test generalization to larger molecules. The structure of the data is exactly the same as for QM9.
- Downloads last month
- 70