Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    TypeError
Message:      Mask must be a pyarrow.Array of type boolean
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1586, in _prepare_split_single
                  writer.write(example, key)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 623, in write
                  self.write_examples_on_file()
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 581, in write_examples_on_file
                  self.write_batch(batch_examples=batch_examples)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 701, in write_batch
                  self.write_table(pa_table, writer_batch_size)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 716, in write_table
                  pa_table = embed_table_storage(pa_table)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2249, in embed_table_storage
                  embed_array_storage(table[name], feature, token_per_repo_id=token_per_repo_id)
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1795, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2124, in embed_array_storage
                  return feature.embed_storage(array, token_per_repo_id=token_per_repo_id)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/pdf.py", line 260, in embed_storage
                  storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null())
                            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/array.pxi", line 4259, in pyarrow.lib.StructArray.from_arrays
                File "pyarrow/array.pxi", line 4929, in pyarrow.lib.c_mask_inverted_from_obj
              TypeError: Mask must be a pyarrow.Array of type boolean
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1595, in _prepare_split_single
                  num_examples, num_bytes = writer.finalize()
                                            ^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 728, in finalize
                  self.write_examples_on_file()
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 581, in write_examples_on_file
                  self.write_batch(batch_examples=batch_examples)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 701, in write_batch
                  self.write_table(pa_table, writer_batch_size)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 716, in write_table
                  pa_table = embed_table_storage(pa_table)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2249, in embed_table_storage
                  embed_array_storage(table[name], feature, token_per_repo_id=token_per_repo_id)
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1795, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2124, in embed_array_storage
                  return feature.embed_storage(array, token_per_repo_id=token_per_repo_id)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/pdf.py", line 260, in embed_storage
                  storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null())
                            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/array.pxi", line 4259, in pyarrow.lib.StructArray.from_arrays
                File "pyarrow/array.pxi", line 4929, in pyarrow.lib.c_mask_inverted_from_obj
              TypeError: Mask must be a pyarrow.Array of type boolean
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1334, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 911, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1447, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1604, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

pdf
pdf
label
class label
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
0ebook_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
2paper_0806
End of preview.
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

ScienceMetaBench

English | δΈ­ζ–‡

πŸ€— HuggingFace Dataset | πŸ’» GitHub Repository

ScienceMetaBench is a benchmark dataset for evaluating the accuracy of metadata extraction from scientific literature PDF files. The dataset covers three major categories: academic papers, textbooks, and ebooks, and can be used to assess the performance of Large Language Models (LLMs) or other information extraction systems.

πŸ“Š Dataset Overview

Data Types

This benchmark includes three types of scientific literature:

  1. Papers

    • Mainly from academic journals and conferences
    • Contains academic metadata such as DOI, keywords, etc.
  2. Textbooks

    • Formally published textbooks
    • Includes ISBN, publisher, and other publication information
  3. Ebooks

    • Digitized historical documents and books
    • Covers multiple languages and disciplines

Data Batches

This benchmark has undergone two rounds of data expansion, with each round adding new sample data:

data/
β”œβ”€β”€ 20250806/          # First batch (August 6, 2024)
β”‚   β”œβ”€β”€ ebook_0806.jsonl
β”‚   β”œβ”€β”€ paper_0806.jsonl
β”‚   └── textbook_0806.jsonl
└── 20251022/          # Second batch (October 22, 2024)
    β”œβ”€β”€ ebook_1022.jsonl
    β”œβ”€β”€ paper_1022.jsonl
    └── textbook_1022.jsonl

Note: The two batches of data complement each other to form a complete benchmark dataset. You can choose to use a single batch or merge them as needed.

PDF Files

The pdf/ directory contains the original PDF files corresponding to the benchmark data, with a directory structure consistent with the data/ directory.

File Naming Convention: All PDF files are named using their SHA256 hash values, in the format {sha256}.pdf. This naming scheme ensures file uniqueness and traceability, making it easy to locate the corresponding source file using the sha256 field in the JSONL data.

πŸ“ Data Format

All data files are in JSONL format (one JSON object per line).

Academic Paper Fields

{
  "sha256": "SHA256 hash of the file",
  "origin_path": "Original path of the PDF file",
  "doi": "Digital Object Identifier",
  "title": "Paper title",
  "author": "Author name",
  "keyword": "Keywords (comma-separated)",
  "abstract": "Abstract content",
  "pub_time": "Publication year"
}

Textbook/Ebook Fields

{
  "sha256": "SHA256 hash of the file",
  "origin_path": "Original path of the PDF file",
  "isbn": "International Standard Book Number",
  "title": "Book title",
  "author": "Author name",
  "abstract": "Introduction/abstract",
  "category": "Classification number (e.g., Chinese Library Classification)",
  "pub_time": "Publication year",
  "publisher": "Publisher"
}

πŸ“– Data Examples

Academic Paper Example

The following image shows an example of metadata fields extracted from an academic paper PDF:

Academic Paper Example

As shown in the image, the following key information needs to be extracted from the paper's first page:

  • DOI: Digital Object Identifier (e.g., 10.1186/s41038-017-0090-z)
  • Title: Paper title
  • Author: Author name
  • Keyword: List of keywords
  • Abstract: Paper abstract
  • pub_time: Publication time (usually the year)

Textbook/Ebook Example

The following image shows an example of metadata fields extracted from the copyright page of a Chinese ebook PDF:

Textbook Example

As shown in the image, the following key information needs to be extracted from the book's copyright page:

  • ISBN: International Standard Book Number (e.g., 978-7-5385-8594-0)
  • Title: Book title
  • Author: Author/editor name
  • Publisher: Publisher name
  • pub_time: Publication time (year)
  • Category: Book classification number
  • Abstract: Content introduction (if available)

These examples demonstrate the core task of the benchmark test: accurately extracting structured metadata information from PDF documents in various formats and languages.

πŸ“Š Evaluation Metrics

Core Evaluation Metrics

This benchmark uses a string similarity-based evaluation method, providing two core metrics:

Similarity Calculation Rules

This benchmark uses a string similarity algorithm based on SequenceMatcher, with the following specific rules:

  1. Empty Value Handling: One is empty and the other is not β†’ similarity is 0
  2. Complete Match: Both are identical (including both being empty) β†’ similarity is 1
  3. Case Insensitive: Convert to lowercase before comparison
  4. Sequence Matching: Use longest common subsequence algorithm to calculate similarity (range: 0-1)

Similarity Score Interpretation:

  • 1.0: Perfect match
  • 0.8-0.99: Highly similar (may have minor formatting differences)
  • 0.5-0.79: Partial match (extracted main information but incomplete)
  • 0.0-0.49: Low similarity (extraction result differs significantly from ground truth)

1. Field-level Accuracy

Definition: The average similarity score for each metadata field.

Calculation Method:

Field-level Accuracy = Ξ£(similarity of that field across all samples) / total number of samples

Example: Suppose evaluating the title field on 100 samples, the sum of title similarity for each sample divided by 100 gives the accuracy for that field.

Use Cases:

  • Identify which fields the model performs well or poorly on
  • Optimize extraction capabilities for specific fields
  • For example: If doi accuracy is 0.95 and abstract accuracy is 0.75, the model needs improvement in extracting abstracts

2. Overall Accuracy

Definition: The average of all evaluated field accuracies, reflecting the model's overall performance.

Calculation Method:

Overall Accuracy = Ξ£(field-level accuracies) / total number of fields

Example: Evaluating 7 fields (isbn, title, author, abstract, category, pub_time, publisher), sum these 7 field accuracies and divide by 7.

Use Cases:

  • Provide a single quantitative metric for overall model performance
  • Facilitate horizontal comparison between different models or methods
  • Serve as an overall objective for model optimization

Using the Evaluation Script

compare.py provides a convenient evaluation interface:

from compare import main, write_similarity_data_to_excel

# Define file paths and fields to compare
file_llm = 'data/llm-label_textbook.jsonl'      # LLM extraction results
file_bench = 'data/benchmark_textbook.jsonl'     # Benchmark data

# For textbooks/ebooks
key_list = ['isbn', 'title', 'author', 'abstract', 'category', 'pub_time', 'publisher']

# For academic papers
# key_list = ['doi', 'title', 'author', 'keyword', 'abstract', 'pub_time']

# Run evaluation and get metrics
accuracy, key_accuracy, detail_data = main(file_llm, file_bench, key_list)

# Output results to Excel (optional)
write_similarity_data_to_excel(key_list, detail_data, "similarity_analysis.xlsx")

# View evaluation metrics
print("Field-level Accuracy:", key_accuracy)
print("Overall Accuracy:", accuracy)

Output Files

The script generates an Excel file containing detailed sample-by-sample analysis:

  • sha256: File identifier
  • origin_path: Original file path
  • For each field (e.g., title):
    • llm_title: LLM extraction result
    • benchmark_title: Benchmark data
    • similarity_title: Similarity score (0-1)

πŸ“ˆ Statistics

Data Scale

First Batch (20250806):

  • Ebooks: 70 records
  • Academic Papers: 70 records
  • Textbooks: 71 records
  • Subtotal: 211 records

Second Batch (20251022):

  • Ebooks: 354 records
  • Academic Papers: 399 records
  • Textbooks: 46 records
  • Subtotal: 799 records

Total: 1010 benchmark test records

The data covers multiple languages (English, Chinese, German, Greek, etc.) and multiple disciplines, with both batches together providing a rich and diverse set of test samples.

🎯 Application Scenarios

  1. LLM Performance Evaluation: Assess the ability of large language models to extract metadata from PDFs
  2. Information Extraction System Testing: Test the accuracy of OCR, document parsing, and other systems
  3. Model Fine-tuning: Use as training or fine-tuning data to improve model information extraction capabilities
  4. Cross-lingual Capability Evaluation: Evaluate the model's ability to process multilingual literature

πŸ”¬ Data Characteristics

  • βœ… Real Data: Real metadata extracted from actual PDF files
  • βœ… Diversity: Covers literature from different eras, languages, and disciplines
  • βœ… Challenging: Includes ancient texts, non-English literature, complex layouts, and other difficult cases
  • βœ… Traceable: Each record includes SHA256 hash and original path

πŸ“‹ Dependencies

pandas>=1.3.0
openpyxl>=3.0.0

Install dependencies:

pip install pandas openpyxl

🀝 Contributing

If you would like to:

  • Report data errors
  • Add new evaluation dimensions
  • Expand the dataset

Please submit an Issue or Pull Request.

πŸ“§ Contact

If you have questions or suggestions, please contact us through Issues.


Last Updated: December 26, 2025

Downloads last month
6