Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
The dataset viewer is not available for this split.
Cannot load the dataset split (in streaming mode) to extract the first rows.
Error code:   StreamingRowsError
Exception:    CastError
Message:      Couldn't cast
id: string
date_created: string
date_modified: string
judges: string
date_filed: string
date_filed_is_approximate: string
slug: string
case_name_short: string
case_name: string
case_name_full: string
scdb_id: string
scdb_decision_direction: string
scdb_votes_majority: string
scdb_votes_minority: string
source: string
procedural_history: string
attorneys: string
nature_of_suit: string
posture: string
syllabus: string
headnotes: string
summary: string
disposition: string
history: string
other_dates: string
cross_reference: string
correction: string
citation_count: string
precedential_status: string
date_blocked: string
blocked: string
filepath_json_harvard: string
filepath_pdf_harvard: string
docket_id: string
arguments: string
headmatter: string
to
{'id': Value('int64'), 'case_name': Value('string'), 'case_name_full': Value('string'), 'date_filed': Value('string'), 'court_id': Value('string'), 'citation_count': Value('int64'), 'precedential_status': Value('string'), 'syllabus': Value('string'), 'judges': Value('string'), 'attorneys': Value('string'), 'docket_id': Value('int64')}
because column names don't match
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
                  return get_rows(
                         ^^^^^^^^^
                File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
                  return func(*args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/utils.py", line 77, in get_rows
                  rows_plus_one = list(itertools.islice(ds, rows_max_number + 1))
                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2431, in __iter__
                  for key, example in ex_iterable:
                                      ^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1975, in _iter_arrow
                  for key, pa_table in self.ex_iterable._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 503, in _iter_arrow
                  for key, pa_table in iterator:
                                       ^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 350, in _iter_arrow
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/parquet/parquet.py", line 106, in _generate_tables
                  yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table)
                                                   ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/parquet/parquet.py", line 73, in _cast_table
                  pa_table = table_cast(pa_table, self.info.features.arrow_schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              id: string
              date_created: string
              date_modified: string
              judges: string
              date_filed: string
              date_filed_is_approximate: string
              slug: string
              case_name_short: string
              case_name: string
              case_name_full: string
              scdb_id: string
              scdb_decision_direction: string
              scdb_votes_majority: string
              scdb_votes_minority: string
              source: string
              procedural_history: string
              attorneys: string
              nature_of_suit: string
              posture: string
              syllabus: string
              headnotes: string
              summary: string
              disposition: string
              history: string
              other_dates: string
              cross_reference: string
              correction: string
              citation_count: string
              precedential_status: string
              date_blocked: string
              blocked: string
              filepath_json_harvard: string
              filepath_pdf_harvard: string
              docket_id: string
              arguments: string
              headmatter: string
              to
              {'id': Value('int64'), 'case_name': Value('string'), 'case_name_full': Value('string'), 'date_filed': Value('string'), 'court_id': Value('string'), 'citation_count': Value('int64'), 'precedential_status': Value('string'), 'syllabus': Value('string'), 'judges': Value('string'), 'attorneys': Value('string'), 'docket_id': Value('int64')}
              because column names don't match

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

CourtListener Legal Dataset

Public mirror of CourtListener bulk legal data, converted to Parquet format for efficient querying and ML workflows.

Quick Start

from datasets import load_dataset

# Load opinion clusters (default - case metadata and summaries)
ds = load_dataset("drengskapur/courtlistener", split="train")

# Load a specific configuration
courts = load_dataset("drengskapur/courtlistener", "courts", split="train")
opinions = load_dataset("drengskapur/courtlistener", "opinions", split="train")

# Stream large datasets (recommended for opinions/dockets)
ds = load_dataset("drengskapur/courtlistener", "opinions", split="train", streaming=True)
for example in ds.take(10):
    print(example["case_name"])

Efficient Querying (Avoid Rate Limits)

Use DuckDB for Server-Side Filtering (Recommended)

Query directly without downloading - filtering happens on HuggingFace servers:

import duckdb

conn = duckdb.connect()
conn.execute("INSTALL httpfs; LOAD httpfs;")

# Only download Supreme Court cases (server-side filter)
scotus = conn.execute("""
    SELECT id, case_name, date_filed, citation_count
    FROM 'hf://datasets/drengskapur/courtlistener/data/opinion-clusters/*.parquet'
    WHERE court_id = 'scotus'
    ORDER BY citation_count DESC
    LIMIT 1000
""").df()

# Get opinions for specific clusters only
cluster_ids = scotus['id'].tolist()[:100]
opinions = conn.execute(f"""
    SELECT id, cluster_id, plain_text
    FROM 'hf://datasets/drengskapur/courtlistener/data/opinions/*.parquet'
    WHERE cluster_id IN ({','.join(map(str, cluster_ids))})
""").df()

Use Streaming for Large Tables

Avoid loading entire datasets into memory:

from datasets import load_dataset

# Stream and filter - never loads full dataset
ds = load_dataset("drengskapur/courtlistener", "opinions", streaming=True, split="train")

# Process in batches with early stopping
results = []
for i, example in enumerate(ds):
    if example.get("court_id") == "scotus":
        results.append(example)
    if len(results) >= 100:
        break

Cache Results Locally

from datasets import load_dataset

# Download once, cache forever
ds = load_dataset(
    "drengskapur/courtlistener", 
    "courts",  # Small table - safe to download
    split="train",
    cache_dir="./hf_cache"
)

# For large tables, use DuckDB with local caching
import duckdb
conn = duckdb.connect("courtlistener_cache.db")
conn.execute("""
    CREATE TABLE IF NOT EXISTS scotus_cases AS
    SELECT * FROM 'hf://datasets/drengskapur/courtlistener/data/opinion-clusters/*.parquet'
    WHERE court_id = 'scotus'
""")

Table Size Guide

Config Rows Recommended Method
courts ~700 load_dataset() - safe to download
people-db-* ~16K-30K load_dataset() - safe to download
citations ~18M DuckDB or streaming
opinion-clusters ~73M DuckDB or streaming
dockets ~70M DuckDB or streaming
opinions ~9M DuckDB (large text) or streaming
citation-map ~76M DuckDB only

Available Configurations

Core Legal Data

Config Description Rows Size
opinion-clusters Case metadata, summaries, citation counts ~73M ~2.5GB
opinions Full opinion text (plain, HTML, XML) ~9M ~54GB
courts Court metadata (700+ courts) ~700 ~100KB
dockets RECAP docket metadata ~70M ~5GB
citations Citation references to reporters ~18M ~1GB
citation-map Citation graph edges ~76M ~500MB
parentheticals Court-written case summaries ~6.5M ~300MB

People & Financial Data

Config Description Rows
people-db-people Judge biographical information ~16K
people-db-positions Judge positions and appointments ~30K
people-db-schools Law school information ~1K
financial-disclosures Judge financial disclosure reports ~1.7M

Additional Tables

Config Description Rows
oral-arguments Oral argument audio metadata ~200K
fjc-integrated-database FJC federal case data ~10M

Embeddings

Config Description Model
embeddings-opinion-clusters Case metadata embeddings BGE-large-en-v1.5
embeddings-opinions Opinion text embeddings BGE-large-en-v1.5

API Access (No Downloads Required)

Query directly via HuggingFace Datasets Server API:

# Get rows
curl "https://datasets-server.huggingface.co/rows?dataset=drengskapur/courtlistener&config=courts&split=train&length=10"

# Search (full-text)
curl "https://datasets-server.huggingface.co/search?dataset=drengskapur/courtlistener&config=opinion-clusters&split=train&query=qualified%20immunity"

# Filter (SQL-like WHERE)
curl "https://datasets-server.huggingface.co/filter?dataset=drengskapur/courtlistener&config=courts&split=train&where=jurisdiction='F'"

Python Client with Rate Limit Handling

import time
import httpx

class CourtListenerAPI:
    BASE = "https://datasets-server.huggingface.co"
    
    def __init__(self, max_retries=5):
        self.client = httpx.Client(timeout=30)
        self.max_retries = max_retries
    
    def _request(self, endpoint: str, params: dict):
        for attempt in range(self.max_retries):
            resp = self.client.get(f"{self.BASE}/{endpoint}", params=params)
            if resp.status_code == 200:
                return resp.json()
            if resp.status_code == 429:  # Rate limited
                wait = 2 ** attempt
                print(f"Rate limited, waiting {wait}s...")
                time.sleep(wait)
                continue
            resp.raise_for_status()
        raise Exception("Max retries exceeded")
    
    def search(self, query: str, config: str = "opinion-clusters", length: int = 10):
        return self._request("search", {
            "dataset": "drengskapur/courtlistener",
            "config": config,
            "split": "train",
            "query": query,
            "length": length
        })
    
    def filter(self, where: str, config: str = "courts", length: int = 100):
        return self._request("filter", {
            "dataset": "drengskapur/courtlistener",
            "config": config,
            "split": "train", 
            "where": where,
            "length": length
        })

# Usage
api = CourtListenerAPI()
results = api.search("miranda rights", length=20)
federal_courts = api.filter("jurisdiction='F'", config="courts")

DuckDB Access

Query directly from DuckDB without downloading:

-- Install and load httpfs extension
INSTALL httpfs; LOAD httpfs;

-- Query Supreme Court cases
SELECT case_name, date_filed, citation_count
FROM 'hf://datasets/drengskapur/courtlistener/data/opinion-clusters/*.parquet'
WHERE court_id = 'scotus'
ORDER BY citation_count DESC
LIMIT 10;

-- Find all opinions citing a specific case
SELECT o.id, o.plain_text
FROM 'hf://datasets/drengskapur/courtlistener/data/opinions/*.parquet' o
JOIN 'hf://datasets/drengskapur/courtlistener/data/citation-map/*.parquet' cm
  ON o.id = cm.citing_opinion_id
WHERE cm.cited_opinion_id = 12345;

Python Examples

Semantic Search with Embeddings

from datasets import load_dataset
import numpy as np

# Load embeddings
embeddings_ds = load_dataset(
    "drengskapur/courtlistener", 
    "embeddings-opinion-clusters", 
    split="train"
)

# Load metadata
clusters = load_dataset(
    "drengskapur/courtlistener", 
    "opinion-clusters", 
    split="train"
)

# Create a simple search index
def cosine_similarity(a, b):
    return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))

# Query embedding (get from your embedding model)
query_embedding = get_embedding("qualified immunity police")

# Find top matches
scores = [
    (i, cosine_similarity(query_embedding, row["embedding"]))
    for i, row in enumerate(embeddings_ds)
]
top_indices = sorted(scores, key=lambda x: -x[1])[:10]

for idx, score in top_indices:
    print(f"{clusters[idx]['case_name']}: {score:.3f}")

Filter by Court and Date

from datasets import load_dataset

ds = load_dataset("drengskapur/courtlistener", "opinion-clusters", split="train")

# Filter to Supreme Court cases from 2020
scotus_2020 = ds.filter(
    lambda x: x["court_id"] == "scotus" and 
              x["date_filed"] and 
              x["date_filed"].startswith("2020")
)

for case in scotus_2020:
    print(f"{case['case_name']} ({case['date_filed']})")

Join Citations with Opinion Text

from datasets import load_dataset

# Load citation map and opinions
citations = load_dataset("drengskapur/courtlistener", "citation-map", split="train")
opinions = load_dataset("drengskapur/courtlistener", "opinions", split="train")

# Build opinion lookup (for small-scale use)
opinion_lookup = {op["id"]: op for op in opinions.take(10000)}

# Find what cites a specific opinion
target_opinion_id = 12345
citing = [c for c in citations if c["cited_opinion_id"] == target_opinion_id]
print(f"Found {len(citing)} citations")

Schema Details

Opinion Clusters

Key fields for case research:

  • id - Unique identifier
  • case_name, case_name_full - Case names
  • date_filed - Filing date
  • court_id - Court identifier (join with courts)
  • citation_count - Number of times cited
  • precedential_status - Published, Unpublished, etc.
  • syllabus - Case summary
  • attorneys - Attorney information
  • judges - Judges on the panel

Opinions

Key fields for full text:

  • id - Unique identifier
  • cluster_id - Links to opinion-clusters
  • plain_text - Plain text version (best for NLP)
  • html - HTML version with formatting
  • type - Opinion type (majority, dissent, concurrence)
  • author_id - Judge who wrote the opinion

Data Source

This dataset mirrors CourtListener bulk data from Free Law Project.

  • Update Frequency: Daily (source data)
  • Source: CourtListener S3 bulk data exports
  • Format: Parquet with zstd compression

License

Public Domain Dedication and License (PDDL) - same as CourtListener source data.

Citation

@misc{courtlistener,
  author = {Free Law Project},
  title = {CourtListener},
  year = {2024},
  publisher = {Free Law Project},
  howpublished = {\url{https://www.courtlistener.com/}},
}
Downloads last month
1,854