TaskName
string | Manufacturer
string | PowerLineFrequency
string | SamplingFrequency
float64 | SoftwareFilters
string | RecordingDuration
float64 | RecordingType
string | EEGReference
string | EEGGround
string | EEGPlacementScheme
string | EEGChannelCount
int64 | EOGChannelCount
int64 | ECGChannelCount
int64 | EMGChannelCount
int64 | MiscChannelCount
int64 | TriggerChannelCount
int64 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
task
|
n/a
|
n/a
| 250
|
n/a
| 386.94
|
continuous
|
n/a
|
n/a
|
based on the extended 10/20 system
| 22
| 3
| 0
| 0
| 0
| 1
|
EEG Dataset
This dataset was created using braindecode, a deep learning library for EEG/MEG/ECoG signals.
Dataset Information
| Property | Value |
|---|---|
| Recordings | 1 |
| Type | Continuous (Raw) |
| Channels | 26 |
| Sampling frequency | 250 Hz |
| Total duration | 0:06:26 |
| Windows/samples | 96,735 |
| Size | 19.22 MB |
| Format | zarr |
Quick Start
from braindecode.datasets import BaseConcatDataset
# Load from Hugging Face Hub
dataset = BaseConcatDataset.pull_from_hub("username/dataset-name")
# Access a sample
X, y, metainfo = dataset[0]
# X: EEG data [n_channels, n_times]
# y: target label
# metainfo: window indices
Training with PyTorch
from torch.utils.data import DataLoader
loader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=4)
for X, y, metainfo in loader:
# X: [batch_size, n_channels, n_times]
# y: [batch_size]
pass # Your training code
BIDS-inspired Structure
This dataset uses a BIDS-inspired organization. Metadata files follow BIDS conventions, while data is stored in Zarr format for efficient deep learning.
BIDS-style metadata:
dataset_description.json- Dataset informationparticipants.tsv- Subject metadata*_events.tsv- Trial/window events*_channels.tsv- Channel information*_eeg.json- Recording parameters
Data storage:
dataset.zarr/- Zarr format (optimized for random access)
sourcedata/braindecode/
βββ dataset_description.json
βββ participants.tsv
βββ dataset.zarr/
βββ sub-<label>/
βββ eeg/
βββ *_events.tsv
βββ *_channels.tsv
βββ *_eeg.json
Accessing Metadata
# Participants info
if hasattr(dataset, "participants"):
print(dataset.participants)
# Events for a recording
if hasattr(dataset.datasets[0], "bids_events"):
print(dataset.datasets[0].bids_events)
# Channel info
if hasattr(dataset.datasets[0], "bids_channels"):
print(dataset.datasets[0].bids_channels)
Created with braindecode
- Downloads last month
- 141