Dataset Viewer
Auto-converted to Parquet Duplicate
TaskName
string
Manufacturer
string
PowerLineFrequency
string
SamplingFrequency
float64
SoftwareFilters
string
RecordingDuration
float64
RecordingType
string
EEGReference
string
EEGGround
string
EEGPlacementScheme
string
EEGChannelCount
int64
EOGChannelCount
int64
ECGChannelCount
int64
EMGChannelCount
int64
MiscChannelCount
int64
TriggerChannelCount
int64
task
n/a
n/a
250
n/a
386.94
continuous
n/a
n/a
based on the extended 10/20 system
22
3
0
0
0
1

EEG Dataset

This dataset was created using braindecode, a deep learning library for EEG/MEG/ECoG signals.

Dataset Information

Property Value
Recordings 1
Type Continuous (Raw)
Channels 26
Sampling frequency 250 Hz
Total duration 0:06:26
Windows/samples 96,735
Size 19.22 MB
Format zarr

Quick Start

from braindecode.datasets import BaseConcatDataset

# Load from Hugging Face Hub
dataset = BaseConcatDataset.pull_from_hub("username/dataset-name")

# Access a sample
X, y, metainfo = dataset[0]
# X: EEG data [n_channels, n_times]
# y: target label
# metainfo: window indices

Training with PyTorch

from torch.utils.data import DataLoader

loader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=4)

for X, y, metainfo in loader:
    # X: [batch_size, n_channels, n_times]
    # y: [batch_size]
    pass  # Your training code

BIDS-inspired Structure

This dataset uses a BIDS-inspired organization. Metadata files follow BIDS conventions, while data is stored in Zarr format for efficient deep learning.

BIDS-style metadata:

  • dataset_description.json - Dataset information
  • participants.tsv - Subject metadata
  • *_events.tsv - Trial/window events
  • *_channels.tsv - Channel information
  • *_eeg.json - Recording parameters

Data storage:

  • dataset.zarr/ - Zarr format (optimized for random access)
sourcedata/braindecode/
β”œβ”€β”€ dataset_description.json
β”œβ”€β”€ participants.tsv
β”œβ”€β”€ dataset.zarr/
└── sub-<label>/
    └── eeg/
        β”œβ”€β”€ *_events.tsv
        β”œβ”€β”€ *_channels.tsv
        └── *_eeg.json

Accessing Metadata

# Participants info
if hasattr(dataset, "participants"):
    print(dataset.participants)

# Events for a recording
if hasattr(dataset.datasets[0], "bids_events"):
    print(dataset.datasets[0].bids_events)

# Channel info
if hasattr(dataset.datasets[0], "bids_channels"):
    print(dataset.datasets[0].bids_channels)

Created with braindecode

Downloads last month
141