The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 1 new columns ({'MODEL 1'}) and 3 missing columns ({'pdbid', '# vina_score', 'rmsd'}).
This happened while the csv dataset builder was generating data using
zip://PDBdata/10/10GS-VWW/10GS-VWW_decoys.pdbqt::hf://datasets/YupuZ/Decoy_DB@c66362269e8740b6eb85db3fe618be1058f558c0/structures.zip
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://huggingface.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
writer.write_table(table)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table
pa_table = table_cast(pa_table, self._schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
return cast_table_to_schema(table, schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
MODEL 1: string
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 376
to
{'pdbid': Value(dtype='string', id=None), '# vina_score': Value(dtype='float64', id=None), 'rmsd': Value(dtype='float64', id=None)}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1428, in compute_config_parquet_and_info_response
parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet
builder._prepare_split(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 1 new columns ({'MODEL 1'}) and 3 missing columns ({'pdbid', '# vina_score', 'rmsd'}).
This happened while the csv dataset builder was generating data using
zip://PDBdata/10/10GS-VWW/10GS-VWW_decoys.pdbqt::hf://datasets/YupuZ/Decoy_DB@c66362269e8740b6eb85db3fe618be1058f558c0/structures.zip
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://huggingface.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
pdbid
string | # vina_score
float64 | rmsd
float64 |
|---|---|---|
10GS-VWW
| -6.849
| 4.659878
|
10GS-VWW
| -6.829
| 3.814967
|
10GS-VWW
| -6.669
| 6.303845
|
10GS-VWW
| -6.594
| 5.977943
|
10GS-VWW
| -6.588
| 6.288187
|
10GS-VWW
| -6.416
| 5.541668
|
10GS-VWW
| -6.363
| 6.640499
|
10GS-VWW
| -6.359
| 5.967768
|
10GS-VWW
| -6.35
| 7.182811
|
10GS-VWW
| -6.277
| 8.001085
|
10GS-VWW
| -6.265
| 6.555503
|
10GS-VWW
| -6.185
| 9.312336
|
10GS-VWW
| -6.176
| 6.826641
|
10GS-VWW
| -6.058
| 6.573407
|
10GS-VWW
| -6.012
| 8.351678
|
10GS-VWW
| -6.009
| 7.063061
|
10GS-VWW
| -5.961
| 6.413722
|
10GS-VWW
| -5.926
| 4.692872
|
10GS-VWW
| -5.916
| 6.794795
|
10GS-VWW
| -5.907
| 6.496293
|
10GS-VWW
| -5.885
| 6.101104
|
10GS-VWW
| -5.755
| 5.054888
|
10GS-VWW
| -5.747
| 6.996554
|
10GS-VWW
| -5.723
| 5.806851
|
10GS-VWW
| -5.651
| 9.811802
|
10GS-VWW
| -5.605
| 5.497033
|
10GS-VWW
| -5.585
| 8.170451
|
10GS-VWW
| -5.564
| 8.490276
|
10GS-VWW
| -5.555
| 7.647462
|
10GS-VWW
| -5.545
| 6.1256
|
10GS-VWW
| -5.535
| 8.37163
|
10GS-VWW
| -5.508
| 5.935044
|
10GS-VWW
| -5.489
| 8.461925
|
10GS-VWW
| -5.473
| 8.154902
|
10GS-VWW
| -5.454
| 6.627912
|
10GS-VWW
| -5.441
| 7.29316
|
10GS-VWW
| -5.418
| 8.125244
|
10GS-VWW
| -5.398
| 5.572532
|
10GS-VWW
| -5.362
| 7.276332
|
10GS-VWW
| -5.354
| 7.596731
|
10GS-VWW
| -5.313
| 9.205617
|
10GS-VWW
| -5.281
| 7.960158
|
10GS-VWW
| -5.28
| 9.585594
|
10GS-VWW
| -5.275
| 8.71343
|
10GS-VWW
| -5.258
| 6.925304
|
10GS-VWW
| -5.247
| 7.505578
|
10GS-VWW
| -5.233
| 5.790226
|
10GS-VWW
| -5.226
| 8.361425
|
10GS-VWW
| -5.217
| 8.399775
|
10GS-VWW
| -5.213
| 6.354485
|
10GS-VWW
| -5.205
| 9.179231
|
10GS-VWW
| -5.204
| 9.562518
|
10GS-VWW
| -5.203
| 6.373942
|
10GS-VWW
| -5.197
| 8.777455
|
10GS-VWW
| -5.196
| 6.866523
|
10GS-VWW
| -5.186
| 6.359702
|
10GS-VWW
| -5.177
| 7.591611
|
10GS-VWW
| -5.175
| 7.157656
|
10GS-VWW
| -5.155
| 6.123518
|
10GS-VWW
| -5.15
| 5.781893
|
10GS-VWW
| -5.123
| 9.105703
|
10GS-VWW
| -5.123
| 8.614573
|
10GS-VWW
| -5.119
| 9.583221
|
10GS-VWW
| -5.119
| 9.608389
|
10GS-VWW
| -5.106
| 6.312141
|
10GS-VWW
| -5.103
| 6.421252
|
10GS-VWW
| -5.09
| 6.236233
|
10GS-VWW
| -5.084
| 6.828954
|
10GS-VWW
| -5.081
| 6.596879
|
10GS-VWW
| -5.081
| 6.416339
|
10GS-VWW
| -5.067
| 6.892225
|
10GS-VWW
| -5.058
| 9.562727
|
10GS-VWW
| -5.052
| 8.009839
|
10GS-VWW
| -5.049
| 6.516289
|
10GS-VWW
| -5.036
| 8.385843
|
10GS-VWW
| -5.032
| 6.326549
|
10GS-VWW
| -5.022
| 6.316435
|
10GS-VWW
| -5.015
| 8.474068
|
10GS-VWW
| -5.007
| 8.969239
|
10GS-VWW
| -5.001
| 7.542822
|
10GS-VWW
| -5
| 8.043035
|
10GS-VWW
| -4.989
| 9.028502
|
10GS-VWW
| -4.989
| 8.864614
|
10GS-VWW
| -4.988
| 9.448008
|
10GS-VWW
| -4.977
| 8.062363
|
10GS-VWW
| -4.974
| 7.306424
|
10GS-VWW
| -4.971
| 9.695047
|
10GS-VWW
| -4.954
| 7.665555
|
10GS-VWW
| -4.952
| 6.684864
|
10GS-VWW
| -4.94
| 8.420167
|
10GS-VWW
| -4.937
| 6.52071
|
10GS-VWW
| -4.92
| 7.079571
|
10GS-VWW
| -4.918
| 6.508571
|
10GS-VWW
| -4.917
| 6.532794
|
10GS-VWW
| -4.907
| 7.125179
|
10GS-VWW
| -4.906
| 9.009592
|
10GS-VWW
| -4.895
| 5.558379
|
10GS-VWW
| -4.882
| 8.119142
|
10GS-VWW
| -4.864
| 6.683162
|
10GS-VWW
| -4.831
| 5.532565
|
Dataset Summary
DecoyDB is a curated dataset of high-resolution protein-ligand complexes and their associated decoy structures. It is designed to support research on graph contrastive learning, binding affinity prediction, and structure-based drug discovery. The dataset is derived from experimentally resolved complexes and refined to ensure data quality.
Data Structure
Each protein-ligand complex is stored in a nested directory under DecoyDB/, using the format:
DecoyDB
├── README.md # This file
├── merged_decoy_scores.csv # RMSD and Vina score for all decoys
├── structures.zip # Structures for proteins, ligands and decoys
├── {prefix}/ # {prefix} = first 2 characters of the complex ID (e.g., '1A', '2B')
│ └── {complex_id}/ # Unique identifier for each complex (e.g., 1A2C_H1Q)
│ ├── {complex_id}_ligand.pdbqt # Ligand structure in AutoDock format
│ ├── {complex_id}_target.pdbqt # Protein structure in AutoDock format
│ ├── {complex_id}_decoys.pdbqt # Concatenated decoy structures
│ └── {complex_id}_decoys_scores.csv # Corresponding RMSD scores for each decoy
Dataset Details
Dataset Refinement
To construct DecoyDB, we first filtered protein–ligand complexes from the Protein Data Bank (PDB) with a resolution ≤ 2.5 Å and applied the following refinement steps:
- Removed ligands with molecular weights outside the (50, 1000) range.
- Excluded complexes involving metal clusters, monoatomic ions, and common crystallization molecules.
- Retained ligands with elements limited to C, N, O, H, S, P, and halogens.
- Retained those protein chains with at least one atom within 10 Å of the ligand.
- Saved the ligand and protein separately.
Decoy Generation
For each refined protein–ligand complex, 100 decoy poses were generated using AutoDock Vina 1.2, with a 5 Å padding grid box and an exhaustiveness parameter of 8 and remove unrealistic generated structures.
Dataset Statistics
- Number of protein–ligand complexes: 61,104
- Number of decoys: 5,353,307
- Average number of decoys per complex: 88
- Average RMSD: 7.22 Å
- RMSD range: [0.03, 25.56] Å
Contact
- Yupu Zhang ([email protected])
- Zhe Jiang ([email protected])
- Downloads last month
- 11