index
int64
1
500
problem
stringlengths
37
987
geo_code
stringlengths
81
4.63k
answer
stringlengths
3
32
category
stringclasses
3 values
source
stringclasses
7 values
problem_type
stringclasses
6 values
401
Let $z = 2 + \sqrt{2} - (3 + 3 \sqrt{2})i$, and let $c = 2 - 3i$. Let $w$ be the result when $z$ is rotated around $c$ by $\frac{\pi}{4}$ counter-clockwise. Find $w.$
[asy] unitsize(0.6 cm); pair C, W, Z; Z = (2 + sqrt(2), -3 - 3*sqrt(2)); C = (2,-3); W = rotate(45,C)*(Z); draw(Z--C--W); dot("$c$", C, N); dot("$w$", W, SE); dot("$z$", Z, S); label("$\frac{\pi}{4}$", C + (0.6,-1)); [/asy]
$6 - 5i$
Primitive Recognition
MATH-500
length
402
Below is the graph of $y = a \sin (bx + c) + d$ for some positive constants $a,$ $b,$ $c,$ and $d.$ Find the smallest possible value of $c.$
[asy]import TrigMacros; size(400); real f(real x) { return 2*sin(3*x + pi) + 1; } draw(graph(f,-3*pi,3*pi,n=700,join=operator ..),red); trig_axes(-3*pi,3*pi,-4,4,pi/2,1); layer(); rm_trig_labels(-5,5, 2); label("$1$", (0,1), E); label("$2$", (0,2), E); label("$3$", (0,3), E); label("$-1$", (0,-1), E); label("$-2$", (0,-2), E); label("$-3$", (0,-3), E); [/asy]
$\pi$
Primitive Recognition
MATH-500
count
403
$\overline{BC}$ is parallel to the segment through $A$, and $AB = BC$. What is the number of degrees represented by $x$?
[asy] draw((0,0)--(10,0)); draw((0,3)--(10,3)); draw((2,3)--(8,0)); draw((2,3)--(4,0)); label("$A$",(2,3),N); label("$B$",(4,0),S); label("$C$",(8,0),S); label("$124^{\circ}$",(2,3),SW); label("$x^{\circ}$",(4.5,3),S); [/asy]
$28$
Primitive Recognition
MATH-500
angle
404
A regular octagon has the same perimeter as the regular hexagon shown here with side length 16 cm. How long is each side of the octagon?
[asy]size(80); pair A = dir(120); pair B=dir(60); pair M=(A+B)/2; draw(dir(360)--B--A--dir(180)--dir(240)--dir(300)--cycle); label("16 cm", M, N);[/asy]
$12$
Primitive Recognition
MATH-500
length
405
In quadrilateral $ABCD$, angle $BAD$ and angle $CDA$ are trisected as shown. What is the degree measure of angle $AFD$?
[asy] size(150); pair A , B, C, D; A = (0,0); B = (2, 4); C = (7,4); D = (7, -2); draw( (0,0)--(2,4) -- (7,4) -- (7, -2)-- cycle); label("$A$", A, SW); label("$B$", B, NW); label("$C$", C, NE); label("$D$", D, SE); pair E, F; E = (4.5-.2,1-.2); F = (5, 3); draw(A--E--D); draw(A--F--D); label("$E$", E, N); label("$F$", F, NW); dot(A);dot(B);dot(C);dot(D);dot(E);dot(F); label("$x$", (1, 1.5), S); label("$x$", (2, 1), S+W); label("$x$", (2, -1), N+N+N+W); label("$y$", (5.5+.3, .5-.3), S); label("$y$", (6.5+.3, 0)); label("$y$", (5+.5, -1.5+.3)); label("$110^{\circ}$",(2.5,3.5)); label("$100^{\circ}$",(6.5-.2,3.5)); [/asy]
$80$
Primitive Recognition
MATH-500
angle
406
A hexagon is inscribed in a circle: What is the measure of $\alpha$, in degrees?
[asy] pair pA, pB, pC, pD, pE, pF, pO; pO = (0, 0); pA = pO + dir(-10); pB = pO + dir(60); pC = pO + dir(130); pD = pO + dir(170); pE = pO + dir(-160); pF = pO + dir(-80); draw(pA--pB--pC--pD--pE--pF--pA); label("$105^\circ$", pF, N * 2); label("$110^\circ$", pB, SW * 1.5); label("$\alpha$", pD, E); draw(circle(pO, 1)); [/asy]
$145$
Primitive Recognition
MATH-500
angle
407
In the diagram, $D$ and $E$ are the midpoints of $\overline{AB}$ and $\overline{BC}$ respectively. Determine the area of quadrilateral $DBEF$.
[asy] size(180); defaultpen(linewidth(.7pt)+fontsize(10pt)); pair A, B, C, D, E, F; A=(0,6); B=(0,0); C=(9,0); D=(0,3); E=(4,0); F=(3,2); draw(E--A--C--D); draw((-1,0)--(10,0), EndArrow); draw((0,-1)--(0,8), EndArrow); label("$A(0,6)$", A, W); label("$B(0,0)$", B, SW); label("$C(8,0)$", C, S); label("$D$", D, W); label("$E$", E, S); label("$F$", F, SW); label("$x$", (10,0), dir(0)); label("$y$", (0,8), dir(90)); [/asy]
$8$
Primitive Recognition
MATH-500
area
408
A set of three points is chosen randomly from the grid shown. Each three-point set has the same probability of being chosen. What is the probability that the points lie on the same straight line?
[asy] size(50); for (int i=0; i<3; ++i) { for (int j=0; j<3; ++j) { dot((i,j));};} [/asy]
$\frac{2}{21}$
Local Relation Composition
MATH-500
ratio
409
Two runners, $A$ and $B,$ start at a point $O$ on a linear track, and start running in the same direction. Runner $B$ runs three times as fast as runner $A.$ An observer stands at point $P$ so that $\overline{OP}$ is perpendicular to the track. Find the maximum of $\angle APB,$ in degrees.
[asy] unitsize(2 cm); pair A, B, O, P; A = (0.4,0); B = (1.2,0); O = (0,0); P = (0,1); draw((-0.5,0)--(2,0)); draw(O--P); draw(P--A); draw(P--B); label("$A$", A, S); label("$B$", B, S); label("$O$", O, S); label("$P$", P, N); [/asy]
$30$
Local Relation Composition
MATH-500
angle
410
A square and a regular heptagon are coplanar and share a common side $\overline{AD}$, as shown. What is the degree measure of angle $BAC$? Express your answer as a common fraction.
[asy] for(int i=0; i <=7; ++i) { draw(dir(360*i/7+90)--dir(360*(i+1)/7+90)); } pair A = dir(360*3/7+90); pair F = dir(360*4/7+90); pair C = A+dir(90)*(F-A); pair D = C+F-A; pair B = dir(360*2/7+90); draw(A--C--D--F); label("$A$",A,S); label("$B$",B,W); label("$C$",C,SE); label("$D$",F,S); [/asy]
$\frac{270}7$
Primitive Recognition
MATH-500
angle
411
There is a total of 70 squares of three sizes whose vertices are points on this rectangular $3\times n$ grid of points. What is the value of $n$?
[asy] unitsize(0.4 inch); dot((0,0),linewidth(9bp)); dot((1,0),linewidth(9bp)); dot((2,0),linewidth(9bp)); dot((0,1),linewidth(9bp)); dot((0,2),linewidth(9bp)); dot((1,1),linewidth(9bp)); dot((2,1),linewidth(9bp)); dot((1,2),linewidth(9bp)); dot((2,2),linewidth(9bp)); filldraw((2.95,-0.05)--(3.05,-0.05)--(3.05,0.05)--(2.95,0.05)--cycle,black); filldraw((2.45,-0.05)--(2.55,-0.05)--(2.55,0.05)--(2.45,0.05)--cycle,black); filldraw((3.45,-0.05)--(3.55,-0.05)--(3.55,0.05)--(3.45,0.05)--cycle,black); filldraw((2.95,0.95)--(3.05,0.95)--(3.05,1.05)--(2.95,1.05)--cycle,black); filldraw((2.45,0.95)--(2.55,0.95)--(2.55,1.05)--(2.45,1.05)--cycle,black); filldraw((3.45,0.95)--(3.55,0.95)--(3.55,1.05)--(3.45,1.05)--cycle,black); filldraw((2.95,1.95)--(3.05,1.95)--(3.05,2.05)--(2.95,2.05)--cycle,black); filldraw((2.45,1.95)--(2.55,1.95)--(2.55,2.05)--(2.45,2.05)--cycle,black); filldraw((3.45,1.95)--(3.55,1.95)--(3.55,2.05)--(3.45,2.05)--cycle,black); dot((4,0),linewidth(9bp)); dot((5,0),linewidth(9bp)); dot((4,1),linewidth(9bp)); dot((5,1),linewidth(9bp)); dot((4,2),linewidth(9bp)); dot((5,2),linewidth(9bp)); [/asy]
$19$
Local Relation Composition
MATH-500
count
412
In the diagram, four circles of radius 1 with centres $P$, $Q$, $R$, and $S$ are tangent to one another and to the sides of $\triangle ABC$, as shown. What is the degree measure of the smallest angle in triangle $PQS$?
[asy] size(200); pair A, B, C, P, Q, R, S; R=(0,0); Q=(-2,0); S=(2,0); P=(1,1.732); B=(-5.73,-1); C=(3.732,-1); A=(1.366,3.098); draw(A--B--C--A); draw(circle(P, 1)); draw(circle(Q, 1)); draw(circle(R, 1)); draw(circle(S, 1)); label("A", A, N); label("B", B, SW); label("C", C, SE); dot(P); dot(Q); dot(R); dot(S); label("P", P, N); label("Q", Q, SW); label("R", R, SW); label("S", S, SE); [/asy]
$30$
Primitive Recognition
MATH-500
angle
413
Five points $A$, $B$, $C$, $D$, and $O$ lie on a flat field. $A$ is directly north of $O$, $B$ is directly west of $O$, $C$ is directly south of $O$, and $D$ is directly east of $O$. The distance between $C$ and $D$ is 140 m. A hot-air balloon is positioned in the air at $H$ directly above $O$. The balloon is held in place by four ropes $HA$, $HB$, $HC$, and $HD$. Rope $HC$ has length 150 m and rope $HD$ has length 130 m. To reduce the total length of rope used, rope $HC$ and rope $HD$ are to be replaced by a single rope $HP$ where $P$ is a point on the straight line between $C$ and $D$. (The balloon remains at the same position $H$ above $O$ as described above.) Determine the greatest length of rope that can be saved.
[asy] size(250); pair A, B, C, D, O, H, W, X, Y, Z; O=(0,0); A=(1,1); D=(1.5,-.3); B=(-1.5,.3); C=(-1,-1); H=(0,2.5); W=(5/3)*(A+D); X=(5/3)*(A+B); Y=(-1)*(W); Z=(-1)*(X); draw(W--X--Y--Z--W); draw(A--C); draw(B--D); draw(O--H, linewidth(1)); draw(A--H, dashed); draw(B--H, dashed); draw(C--H, dashed); draw(D--H, dashed); dot(A); dot(B); dot(C); dot(D); dot(O); dot(H); label("A", A, NE); label("B", B, SW); label("C", C, SE); label("D", D, NE); label("O", O, SE); label("H", H, NW); [/asy]
$160$
Global Abstract Integration
MATH-500
length
414
Twelve 1 by 1 squares form a rectangle, as shown. What is the total area of the shaded region?
[asy] size(4cm);defaultpen(linewidth(0.75)); // Filled portions fill((0, 4)--(0, 0)--(2, 0)--cycle, gray(0.75)); fill((0, 4)--(3, 4)--(3, 0)--cycle, gray(0.75)); // grid int j; for (j = 0; j < 4; ++j) {draw((j, 0)--(j, 4));} for (j = 0; j < 5; ++j) {draw((0, j)--(3, j));} //diagonals draw((0, 4)--(3, 0)); draw((0, 4)--(2, 0)); [/asy]
$10$
Primitive Recognition
MATH-500
area
415
The wheel shown is spun twice, so that the numbers indicated by the pointer are randomly determined (with each number on the wheel being equally likely). The two numbers determined in this way are recorded. The first number is divided by 4, determining one of the remainders 1,2,3 marking the columns of the checkerboard shown. The second number is divided by 5, determining one of the remainders 1,2,3,4 marking the rows of the checkerboard. Finally, a checker is placed on the square where this column and row meet. What is the probability that the checker is placed on a shaded square of the checkerboard?
[asy] unitsize(1cm); draw(Circle((0,0),2),linewidth(0.7)); draw((1.7,1)--(-1.7,-1),linewidth(0.7)); draw((1.7,-1)--(-1.7,1),linewidth(0.7)); draw((0,2)--(0,-2)); label("1",(0.8,0.5),NW); label("2",(0.8,-0.5),SW); label("6",(-0.8,0.5),NE); label("9",(-0.8,-0.5),SE); label("3",(-0.7,0),W); label("7",(0.7,0),E); draw((-2.8,0)--(-2.1,0),Arrow); label("Pointer",(-2.8,0),W); fill((3,0)--(3,1)--(4,1)--(4,0)--cycle,gray(0.7)); fill((3,-2)--(3,-1)--(4,-1)--(4,-2)--cycle,gray(0.7)); fill((4,1)--(4,2)--(5,2)--(5,1)--cycle,gray(0.7)); fill((4,-1)--(4,0)--(5,0)--(5,-1)--cycle,gray(0.7)); fill((5,0)--(5,1)--(6,1)--(6,0)--cycle,gray(0.7)); fill((5,-2)--(5,-1)--(6,-1)--(6,-2)--cycle,gray(0.7)); draw((3,-2)--(3,2)--(6,2)--(6,-2)--cycle,linewidth(0.7)); draw((3,-1)--(6,-1),linewidth(0.7)); draw((3,0)--(6,0),linewidth(0.7)); draw((3,1)--(6,1),linewidth(0.7)); draw((4,-2)--(4,2),linewidth(0.7)); draw((5,-2)--(5,2),linewidth(0.7)); label("1",(3.5,-2),S); label("2",(4.5,-2),S); label("3",(5.5,-2),S); label("1",(3,-1.5),W); label("2",(3,-0.5),W); label("3",(3,0.5),W); label("4",(3,1.5),W); [/asy]
$\frac{1}{2}$
Local Relation Composition
MATH-500
ratio
416
The area of $\triangle ABC$ is 6 square centimeters. $\overline{AB}\|\overline{DE}$. $BD=4BC$. What is the number of square centimeters in the area of $\triangle CDE$?
[asy] draw((-.3,-3)--(.1,1)--(-1,0)--(3,0)--cycle); label("$A$",(.1,1),N); label("$B$",(-1,0),W); label("$C$",(0,0),NE); label("$D$",(3,0),E); label("$E$",(-.3,-3),S); [/asy]
$54$
Local Relation Composition
MATH-500
area
417
In the diagram, $PT$ is parallel to $QR.$ What is the measure of $\angle PQR$ in degrees?
[asy] draw((0,0)--(10,0),black+linewidth(1)); draw((0,0)--(10,0),MidArrow); draw((10,0)--(20,0),black+linewidth(1)); draw((0,0)--(-7,10)--(7,10)--(10,0),black+linewidth(1)); draw((-5,10)--(7,10),MidArrow); label("$x^{\circ}$",(-6,10),SE); label("$2x^{\circ}$",(7,10),SW); label("$128^{\circ}$",(10,0),NE); label("$P$",(-7,10),N); label("$T$",(7,10),N); label("$R$",(10,0),S); label("$Q$",(0,0),S); [/asy]
$116$
Local Relation Composition
MATH-500
angle
418
In the figure below, quadrilateral $CDEG$ is a square with $CD = 3$, and quadrilateral $BEFH$ is a rectangle. If $BE = 5$, how many units is $BH$? Express your answer as a mixed number.
[asy] unitsize(5mm); defaultpen(linewidth(.7pt)+fontsize(8pt)); pair A=(0,0), B=(3,0), C=(6,0), D=(9,0), Ep=(9,3), G=(6,3); pair F0=bisectorpoint(B,2*Ep-B), H0=bisectorpoint(Ep,2*B-Ep); pair H=extension(B,H0,A,G); pair F=extension(Ep,F0,A,G); draw(H--B--Ep--F--A--D--Ep--G--C); label("$A$",A,S); label("$B$",B,S); label("$C$",C,S); label("$D$",D,S); label("$E$",Ep,E); label("$F$",F,N); label("$G$",G,NW); label("$H$",H,NW); [/asy]
$1\frac{4}{5}$
Global Abstract Integration
MATH-500
length
419
In circle $J$, $HO$ and $HN$ are tangent to the circle at $O$ and $N$. Find the number of degrees in the sum of $m\angle J$ and $m\angle H$.
[asy] size(150); import graph; pair J = (0,0), H = (6,0), O, N; path circ = Circle(J,3); pair M = midpoint(J--H); path secCirc = Circle(M,3); pair[] tangentPoints = intersectionpoints(circ,secCirc); O = tangentPoints[0]; N = tangentPoints[1]; draw(J--N--H--O--cycle); draw(circ); label("$H$",H,E); label("$J$",J,W); label("$N$",N,S); label("$O$",O,NE); [/asy]
$180$
Primitive Recognition
MATH-500
angle
420
In the diagram, the three concentric circles have radii of $4,$ $6,$ and $7.$ Three regions are labeled $X,$ $Y,$ or $Z$ below. Of these three regions, what is the difference between the area of the region with the greatest area and the area of the region with the smallest area? Express your answer in exact form.
[asy] import graph; filldraw(circle((0,0),7), lightgray, black+linewidth(1)); filldraw(circle((0,0),6), gray, black+linewidth(1)); filldraw(circle((0,0),4), white, black+linewidth(1)); dot((0,0)); label("$X$",(2,0)); label("$Y$",(5,0)); label("$Z$",(6.5,0)); [/asy]
$7\pi$
Primitive Recognition
MATH-500
area
421
In regular pentagon $FGHIJ$, extending the sides of the pentagon, as shown, forms a star. What is the measure of angle $A$ in the figure?
[asy] draw((-42.4,30.8)--(-10,30.8)--(0,63.2)--(10,30.8)--(42.4,30.8)--(16.2,11.8)--(24.9,-18.1)--(0,0)--(-24.9,-18.1)--(-16.2,11.8)--cycle,linewidth(1)); draw((-10,30.8)--(10,30.8)--(16.2,11.8)--(0,0)--(-16.2,11.8)--cycle,linewidth(1)); label("$A$",(-42.4,30.8),W); label("$F$",(-10,30.8),NW); dot((-10,30.8)); label("$G$",(10,30.8),NE); dot((10,30.8)); label("$H$",(16.2,11.8),E); dot((16.2,11.8)); label("$I$",(0,0),S); dot((0,0)); label("$J$",(-16.2,11.8),WSW); dot((-16.2,11.8)); [/asy]
$36$
Primitive Recognition
MATH-500
angle
422
$\textbf{Juan's Old Stamping Grounds}$ Juan organizes the stamps in his collection by country and by the decade in which they were issued. The prices he paid for them at a stamp shop were: Brazil and France, $6$ cents each, Peru $4$ cents each, and Spain $5$ cents each. (Brazil and Peru are South American countries and France and Spain are in Europe.) What was the average price, in cents, of his $70\text{'s}$ stamps? Round your answer to the nearest tenth of a cent.
[asy] /* AMC8 2002 #8, 9, 10 Problem */ size(3inch, 1.5inch); for ( int y = 0; y <= 5; ++y ) { draw((0,y)--(18,y)); } draw((0,0)--(0,5)); draw((6,0)--(6,5)); draw((9,0)--(9,5)); draw((12,0)--(12,5)); draw((15,0)--(15,5)); draw((18,0)--(18,5)); label(scale(0.8)*"50s", (7.5,4.5)); label(scale(0.8)*"4", (7.5,3.5)); label(scale(0.8)*"8", (7.5,2.5)); label(scale(0.8)*"6", (7.5,1.5)); label(scale(0.8)*"3", (7.5,0.5)); label(scale(0.8)*"60s", (10.5,4.5)); label(scale(0.8)*"7", (10.5,3.5)); label(scale(0.8)*"4", (10.5,2.5)); label(scale(0.8)*"4", (10.5,1.5)); label(scale(0.8)*"9", (10.5,0.5)); label(scale(0.8)*"70s", (13.5,4.5)); label(scale(0.8)*"12", (13.5,3.5)); label(scale(0.8)*"12", (13.5,2.5)); label(scale(0.8)*"6", (13.5,1.5)); label(scale(0.8)*"13", (13.5,0.5)); label(scale(0.8)*"80s", (16.5,4.5)); label(scale(0.8)*"8", (16.5,3.5)); label(scale(0.8)*"15", (16.5,2.5)); label(scale(0.8)*"10", (16.5,1.5)); label(scale(0.8)*"9", (16.5,0.5)); label(scale(0.8)*"Country", (3,4.5)); label(scale(0.8)*"Brazil", (3,3.5)); label(scale(0.8)*"France", (3,2.5)); label(scale(0.8)*"Peru", (3,1.5)); label(scale(0.8)*"Spain", (3,0.5)); label(scale(0.9)*"Juan's Stamp Collection", (9,0), S); label(scale(0.9)*"Number of Stamps by Decade", (9,5), N); [/asy]
$5.4$
Primitive Recognition
MATH-500
count
423
In the diagram below, we have $\sin \angle RPQ = \frac{7}{25}$. What is $\cos \angle RPS$?
[asy] pair R,P,Q,SS; SS = (-2,0); P = (0,0); Q = (2,0); R = rotate(aSin(7/25))*(1.5,0); dot("$S$",SS,S); dot("$Q$",Q,S); dot("$R$",R,N); dot("$P$",P,S); draw(Q--SS); draw(P--R); [/asy]
$-\frac{24}{25}$
Primitive Recognition
MATH-500
count
424
In the diagram, two circles, each with center $D$, have radii of $1$ and $2$. The total area of the shaded region is $\frac5{12}$ of the area of the larger circle. How many degrees are in the measure of (the smaller) $\angle ADC$?
[asy] size(4cm); defaultpen(linewidth(0.75)); real adc = 100; pair d = (0, 0); pair a = 2 * dir(100); pair c = (2, 0); path inner = arc(d, a/2, c/2, CW); path outer = arc(d, c, a, CCW); guide region1 = (a--a/2)..inner..(c/2--c)..outer..cycle; guide region2 = arc(d, a/2, c/2, CCW)..(c/2--d--a/2)..cycle; fill(region1, gray(0.75)); fill(region2, gray(0.75)); draw(unitcircle); draw(scale(2) * unitcircle); draw(a--d--c); label("$A$", a, N); label("$C$", c, E); label("$D$", d, NE); [/asy]
$120$
Local Relation Composition
MATH-500
angle
425
Triangle $ABC$ is isosceles, with $AB=AC$ and altitude $AM=11.$ Suppose that there is a point $D$ on $\overline{AM}$ with $AD=10$ and $\angle BDC=3\angle BAC.$ Find the perimeter of triangle $ABC.$
[asy] unitsize(0.4 cm); pair A, B, C, D, M; A = (0,11); D = (0,1); B = (-11/2,0); C = (11/2,0); M = (B + C)/2; draw(A--B--C--cycle); draw(A--M); draw(B--D--C); label("$A$", A, N); label("$B$", B, SW); label("$C$", C, SE); label("$D$", D, NW); label("$M$", M, S); [/asy]
$11 \sqrt{5} + 11$
Local Relation Composition
MATH-500
length
426
The following line is parameterized, so that its direction vector is of the form $\begin{pmatrix} -7 \\ b \end{pmatrix}.$ Find $b.$
[asy] unitsize(0.4 cm); pair A, B, L, R; int i, n; for (i = -8; i <= 8; ++i) { draw((i,-8)--(i,8),gray(0.7)); draw((-8,i)--(8,i),gray(0.7)); } draw((-8,0)--(8,0),Arrows(6)); draw((0,-8)--(0,8),Arrows(6)); A = (-5,4); B = (-1,3); L = extension(A, B, (-8,0), (-8,1)); R = extension(A, B, (8,0), (8,1)); draw(L--R, red); label("$x$", (8,0), E); label("$y$", (0,8), N); [/asy]
$\frac{7}{4}$
Primitive Recognition
MATH-500
count
427
What is the number of square centimeters in the area of this trapezoid?
[asy] defaultpen(linewidth(0.7)); draw((0,0)--(27,0)--(15,9)--(0,9)--cycle); label("5 cm",(19,4.5),NE); label("5 cm",(7.5,9),N); label("3 cm",(0,4.5),W); label("9 cm",(13.5,0),S); draw(rightanglemark((0,9),(0,0),(27,0),35)); draw(rightanglemark((0,0),(0,9),(15,9),35)); [/asy]
$21$
Primitive Recognition
MATH-500
area
428
In the diagram, $AD=BD=CD$ and $\angle BCA = 40^\circ.$ What is the measure of $\angle BAC?$
[asy] draw((0,0)--(10,0)--(8.2635,9.8481)--cycle,black+linewidth(1)); draw((10,0)--(20,0)--(8.2635,9.8481),black+linewidth(1)); draw((5,-0.5)--(5,0.5),black+linewidth(1)); draw((15,-0.5)--(15,0.5),black+linewidth(1)); draw((8.6318,4.8359)--(9.6317,5.0122),black+linewidth(1)); label("$A$",(8.2635,9.8481),N); label("$B$",(0,0),SW); label("$C$",(20,0),SE); label("$D$",(10,0),S); [/asy]
$90$
Primitive Recognition
MATH-500
angle
429
A rectangular field is enclosed in an athletic track, as shown below. The track consists of two edges of the field, and two semicircles. The length of the track is 400 meters. What is the largest possible area of the field, in square meters?
[asy] unitsize(1 cm); filldraw((0,0)--(3,0)--(3,2)--(0,2)--cycle,lightgreen); draw((0,0)--(3,0),linewidth(2*bp)); draw((0,2)--(3,2),linewidth(2*bp)); draw(arc((3,1),1,-90,90),linewidth(2*bp)); draw(arc((0,1),1,90,270),linewidth(2*bp)); [/asy]
$\frac{20000}{\pi}$
Local Relation Composition
MATH-500
area
430
In $\triangle{RST}$, shown, $\sin{R}=\frac{2}{5}$. What is $\sin{T}$?
[asy] pair R,S,T; T = (0,0); S = (2,0); R = (2,sqrt(21)); draw(R--S--T--R); draw(rightanglemark(R,S,T,10)); label("$T$",T,SW); label("$S$",S,SE); label("$R$",R,NE); label("$5$",(R+T)/2,NW); [/asy]
$\frac{\sqrt{21}}{5}$
Primitive Recognition
MATH-500
count
431
The distances from a point $P$ to five of the vertices of a regular octahedron are 3, 7, 8, 9, and 11. Find the distance from $P$ to the sixth vertex.
[asy] import three; size(125); currentprojection = perspective(6,3,1); triple A, B, C, D, E, F, P; A = (1,0,0); B = (-1,0,0); C = (0,1,0); D = (0,-1,0); E = (0,0,1); F = (0,0,-1); P = (1.2,1.5,1); draw(A--P,red); draw(B--P,red); draw(C--P,red); draw(D--P,red); draw(E--P,red); draw(F--P,red); draw(A--C); draw(A--D); draw(A--E); draw(A--F); draw(C--E--D--F--cycle); draw(D--B--C,dashed); draw(B--C,dashed); draw(B--D,dashed); draw(B--E,dashed); draw(B--F,dashed); label("$P$", P, NE); [/asy]
$\sqrt{66}$
Global Abstract Integration
MATH-500
length
432
Quadrilateral $ABCD$ is a square with area 16 square inches. The figure represents the pieces of a Chinese tangram in which all the triangles are isosceles and piece "e'' is a square. What is the area of the gray piece, in square inches?
[asy] fill((6,0)--(12,6)--(12,0)--cycle,gray(.7)); draw((0,0)--(0,12)--(12,12)--(12,0)--cycle,linewidth(1)); draw((0,0)--(12,12),linewidth(1)); draw((3,3)--(6,0)--(12,6),linewidth(1)); draw((0,12)--(9,3)--(9,9),linewidth(1)); label("$A$",(0,12),W); label("$B$",(12,12),E); label("$C$",(12,0),E); label("$D$",(0,0),W); label("e",(6,3)); [/asy]
$2$
Local Relation Composition
MATH-500
area
433
A square and an equilateral triangle have equal perimeters. The area of the triangle is $16\sqrt{3}$ square centimeters. How long, in centimeters, is a diagonal of the square? Express your answer in simplest radical form.
[asy] defaultpen(linewidth(1)); draw((0,0)--(1,0)--(1,1)--(0,1)--cycle); pair a = (1.25,0)+1.25*dir(60); pair b = a+1.25*dir(-60); draw((1.25,0)--a--b--cycle); [/asy]
$6\sqrt{2}$
Local Relation Composition
MATH-500
length
434
Rectangle $ABCD$ has center $O$ and $AB/AD=k$. A point is randomly chosen from the interior of rectangle $ABCD$. What is the probability that it is closer to $O$ than to any of the four vertices?
[asy] size(200); draw((-250,100)--(250,100)--(250,-100)--(-250,-100)--cycle); dot((0,0)); label("$O$",(0,0),N); label("$A$",(-250,100),NW); label("$B$",(250,100),NE); label("$C$",(250,-100),SE); label("$D$",(-250,-100),SW);[/asy]
$\frac{1}{2}$
Local Relation Composition
MATH-500
ratio
435
The circle $x^2 + y^2 = 2$ and the parabola $y^2 = 8x$ have two common tangents, forming four points of tangency. Find the area of the quadrilateral formed by the four points of tangency.
[asy] unitsize(0.8 cm); real upperparab (real x) { return (sqrt(8*x)); } real lowerparab (real x) { return (-sqrt(8*x)); } pair A, B, C, D; A = (-1,1); B = (2,4); C = (-1,-1); D = (2,-4); draw(graph(upperparab,0,3)); draw(graph(lowerparab,0,3)); draw(Circle((0,0),sqrt(2))); draw(interp(A,B,-0.2)--interp(A,B,1.2)); draw(interp(C,D,-0.2)--interp(C,D,1.2)); draw(A--C); draw(B--D); dot(A); dot(B); dot(C); dot(D); [/asy]
$15$
Local Relation Composition
MATH-500
area
436
In the diagram below, we have $\overline{ST}\parallel\overline{QR}$, $\angle P= 40^\circ$, and $\angle Q =35^\circ$. Find the measure of $\angle STR$ in degrees.
[asy] pair P,Q,R,SS,T; Q = (0,0); R = (1,0); P = (1.1,0.5); SS = 0.6*P; T = R + 0.6*(P-R); draw(T--SS--P--R--Q--SS); label("$P$",P,N); label("$S$",SS,NW); label("$Q$",Q,S); label("$R$",R,S); label("$T$",T,ENE); [/asy]
$75$
Primitive Recognition
MATH-500
angle
437
In the diagram, what is the area of the shaded triangle?
[asy] fill((0,0)--(2,3)--(10,0)--cycle,gray); draw((0,0)--(10,0)--(10,3)--(0,3)--cycle,linewidth(1)); draw((0,0)--(2,3)--(10,0),linewidth(1)); label("10 cm",(5,3),N); label("10 cm",(5,0),S); label("3 cm",(0,1.5),W); label("3 cm",(10,1.5),E); draw((0,2.5)--(.5,2.5)--(.5,3)); draw((10,2.5)--(9.5,2.5)--(9.5,3)); [/asy]
$15$
Primitive Recognition
MATH-500
area
438
Below is a magic square, meaning that the sum of the numbers in each row, in each column, and in each of the $2$ main diagonals are equal. What is the value of $n$?
[asy]size(125); for(int i = 0; i<4; ++i) { draw((0,i)--(3,i),linewidth(1)); } for(int j = 0; j<4; ++j) { draw((j,0)--(j,3),linewidth(1)); } label("$n-3$",(.5,.5)); label("3",(.5,1.5)); label("$n+1$",(.5,2.5)); label("$n+2$",(1.5,.5)); label("$2n-9$",(1.5,1.5)); label("$1$",(1.5,2.5)); label("$2$",(2.5,.5)); label("$n$",(2.5,1.5)); label("$n-1$",(2.5,2.5)); [/asy]
$7$
Primitive Recognition
MATH-500
count
439
What is the shortest distance that can be travelled if you start at any point, $A$, $B$, $C$, or $D$, and visit the other three points once?
[asy] pair A,B,C, D; A = (-3,3); B = (3,0); C = (0, -4); D = (0,0); draw(D--B--C--cycle); draw(D--A--B--cycle);draw(D--A--C--cycle); label("$A$", A, NW);label("$B$", B, E); label("$C$", C, S);label("$D$", D, NE); label("3", D--B, S); label("6", A--B, NE); label("6", A--C, SW); label("4", D--C, NW+N); label("5", A--D, SE+NE); label("5", C--B, E); [/asy]
$13$
Primitive Recognition
MATH-500
length
440
The perpendicular height of the solid figure is 12m. Hence, find the length of the diameter of the solid figure's base.
[python] import matplotlib.pyplot as plt import numpy as np h = 9 l = 11 r = np.sqrt(l**2 - h**2) plt.plot([0, -r], [0, -h], 'k', lw=3) plt.plot([0, r], [0, -h], 'k', lw=3) plt.plot([0, 0], [0, -h], 'k--', lw=2) theta = np.linspace(0, 2 * np.pi, 100) x = r * np.cos(theta) y = (r/2) * np.sin(theta) - h plt.plot(x, y, 'navy', lw=3) plt.plot([-1.5*r, -1.5*r], [0, -h], 'k', lw=2) plt.plot([-1.5*r-0.2, -1.5*r+0.2], [0, 0], 'k', lw=2) plt.plot([-1.5*r-0.2, -1.5*r+0.2], [-h, -h], 'k', lw=2) plt.text(-1.65*r, -h/2, '12 m', fontsize=14, va='center') plt.plot([0.5, 1.1*r], [0, -h], 'k', lw=3) plt.plot([0, 0.2*r-0.1], [0, 0.1*r], 'k', lw=3) plt.plot([1*r, 1.2*r], [-h-0.2, -h+0.2], 'k', lw=3) plt.text(r/2 + 0.6, -h/2, '13 m', fontsize=14) plt.plot([0, r], [-h, -h], 'k--', lw=2) plt.plot([0.1*r, 0.5, 0.1], [-h, -h+0.5, -h+0.5], 'teal', lw=4) plt.text(r/2, -h - 0.9, 'r', fontsize=14, ha='center') plt.plot([0], [-h], 'o', color='black') plt.axis('equal') plt.axis('off') plt.ylim(-15, 2) plt.xlim(-15, 15) [/python]
$10$
Global Abstract Integration
Mathverse
length
441
The diagram shows a solid figure with a slant height of 13 m. The radius of the base of the solid figure is denoted by $r$. Find the value of $r$.
[python] import matplotlib.pyplot as plt import numpy as np h = 9 s = 10 r = (s**2 - h**2)**0.5 theta = np.linspace(0, 2*np.pi, 200) x_circ = r * np.cos(theta) y_circ = r/2 * np.sin(theta) fig, ax = plt.subplots(figsize=(6,10)) ax.plot(x_circ, y_circ, 'k') ax.plot([0, -r], [h, 0], 'k') ax.plot([0, r], [h, 0], 'k') ax.plot([0, 0], [0, h], 'k--') ax.plot([-r, r], [0, 0], 'b', linewidth=1) ax.plot([0.4, 0.4, 0], [0, 0.4, 0.4], 'b', linewidth=1) ax.text(-0.2, h/2, "$12m$", fontsize=14, color="k") ax.text(r-2.5, h/2, "$13m$", fontsize=14, color="k") ax.text(r/2-0.1, -0.7, "$r$", fontsize=14, color="b") ax.text(0-0.4, -0.5, "$O$", fontsize=14, color="b") ax.set_aspect('equal') ax.axis('off') plt.ylim(-r-1, h+1) plt.xlim(-r-2, r+2) [/python]
$5$
Global Abstract Integration
Mathverse
length
442
A solid figure has a side $GF$ of length 15cm as shown. Now, we want to find $y$, the length of the diagonal $DF$. Calculate $y$ to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig = plt.figure(figsize=(9,6)) ax = fig.add_subplot(121, projection='3d') # Vertices as (x, y, z) A = [0, 0, 12] B = [0, 8, 12] C = [17, 8, 12] D = [17, 0, 12] E = [0, 0, 0] F = [0, 8, 0] G = [17, 8, 0] H = [17, 0, 0] edges = [ (A,D), (D,C), (C,B), (B,A), (H,G), (E,H), (A,E), (D,H), (C,G) ] for e in edges: x, y, z = zip(*e) ax.plot(x, y, z, color='black') ax.plot([B[0],F[0]], [B[1],F[1]], [B[2],F[2]], ls='dashed', color='black') ax.plot([E[0],F[0]], [E[1],F[1]], [E[2],F[2]], ls='dashed', color='black') ax.plot([F[0],G[0]], [F[1],G[1]], [F[2],G[2]], ls='dashed', color='black') ax.plot([D[0],F[0]], [D[1],F[1]], [D[2],G[2]], ls='dotted', color='grey') ax.plot([H[0],F[0]], [H[1],F[1]], [H[2],G[2]], ls='dotted', color='grey') verts = {'A':A, 'B':B, 'C':C, 'D':D, 'E':E, 'F':F, 'G':G, 'H':H} for k, v in verts.items(): ax.scatter(*v, color='navy') d = dict(A=(-0.5,-0.5,0.5), D=(0.5,-0.5,0.5), C=(0.5,0.5,0.5), B=(-0.5,0.5,0.5), H=(0.5,-0.5,-0.25), G=(0.7,0.7,-0.2), F=(-0.5,0.5,-0.2), E=(-0.8,-0.7,-0.2)) o = d.get(k, (0,0,0)) ax.text(v[0]+o[0], v[1]+o[1], v[2]+o[2], f'{k}', color='navy', fontsize=17, fontweight='bold') ax.text(1, 6, (A[2]+D[2])/2, r"$11\,\mathit{cm}$", fontsize=17, color='black', va='center', ha='right', rotation=90) ax.text(17, 6, 6, r"$11\,\mathit{cm}$", fontsize=17, color='black', va='center', ha='left', rotation=90) ax.text(7.5, 8.7, 0, r"$15\,\mathit{cm}$", fontsize=17, color='black', ha='center', va='bottom') ax.text((D[0]+F[0])/2, (D[1]+F[1])/2+0.5, (D[2]+F[2])/2+0.9, r"$y\,cm$", fontsize=17, color='black') ax.text((E[0]+G[0])/2-1, (E[1]+G[1])/2-1, (E[2]+G[2])/2, r"$z\,cm$", fontsize=17, color='black') ax.set_xlim(-3, 19) ax.set_ylim(-3, 12) ax.set_zlim(-3, 16) ax.set_xticks([]) ax.set_yticks([]) ax.set_zticks([]) ax.set_box_aspect([2,1,1]) ax.view_init(azim=-60, elev=22) plt.tight_layout() ax.axis('off') [/python]
$21.61$
Global Abstract Integration
Mathverse
length
443
The length of CD side is 12cm. Calculate the area of the triangular divider correct to two decimal places.
[python] import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.art3d import Poly3DCollection import numpy as np A = np.array([0, 0, 0]) B = np.array([20, 0, 0]) C = np.array([20, 15, 0]) D = np.array([20, 15, 15]) E = np.array([0, 0, 15]) F = np.array([20, 0, 15]) G = np.array([0, 15, 0]) H = np.array([0, 15, 15]) fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') edges = [ [A, B], [B, C], [C, G], [G, A], # bottom [E, F], [F, D], [D, H], [H, E], # top [A, E], [B, F], [C, D], [G, H] # vertical ] for edge in edges: ax.plot(*zip(*edge), c='k') face = [A, C, D] ax.add_collection3d(Poly3DCollection([[A, C, D]], facecolors='cyan', linewidths=1, edgecolors='cyan', alpha=0.4)) ax.plot([A[0], C[0]], [A[1], C[1]], [A[2], C[2]], color='r', linestyle='--', linewidth=2) def annotate_point(point, label, offset=(0,0.5,0)): ax.text(point[0]+offset[0], point[1]+offset[1], point[2]+offset[2], label, fontsize=15, color='navy') annotate_point(A, 'A') annotate_point(B, 'B') annotate_point(C, 'C') annotate_point(D, 'D') ax.text(8.5, -1.5, 0, r'$17cm$', fontsize=13) ax.text(8.5, 6, 0, r'$zcm$', fontsize=13) ax.text(20.8, 6, 0, r'$12cm$', fontsize=13) ax.text(20.8, 15, 6, r'$12cm$', fontsize=13) ax.set_xlim([0, 20]) ax.set_ylim([0, 15]) ax.set_zlim([0, 15]) ax.set_box_aspect([20, 15, 15]) ax.axis('off') [/python]
$124.85$
Global Abstract Integration
Mathverse
area
444
The figure shows a solid figure with radius of 6 centimeters. Find the volume of the solid figure, rounding your answer to two decimal places.
[python] import numpy as np import matplotlib.pyplot as plt r = 10 h = 12 theta = np.linspace(0, 2*np.pi, 100) x = r * np.cos(theta) y = r/2 * np.sin(theta) fig, ax = plt.subplots(figsize=(6,6)) ax.plot(x, y + h, 'k') ax.plot(x[50:], y[50:], 'k') ax.plot([r, r], [h, 0], 'k') ax.plot([-r, -r], [h, 0], 'k') ax.plot(x[(theta > np.pi)], y[(theta > np.pi)] + h, 'k--', alpha=0.5) ax.plot([0, r], [h, h], 'k') ax.text(r/2, h+0.5, '6 cm', fontsize=12, ha='center') ax.text(r+0.5, h/2, '8 cm', fontsize=12, va='center') ax.axis('equal') ax.axis('off') [/python]
$904.78$
Global Abstract Integration
Mathverse
volume
445
Find the volume of the solid figure shown. The perpendicular height is 6 centimeters. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(10, 10)) center = [0, 0] radius = 1 height = 5 theta = np.linspace(0, 2 * np.pi, 200) x = radius * np.cos(theta) y = 0.5 * radius * np.sin(theta) ax.plot(x, y, 'k') ax.plot([0, -radius], [height, 0], 'k') ax.plot([0, radius], [height, 0], 'k') ax.plot([0, 0], [0, height], 'k') ax.plot([0, radius], [0, 0], 'k') ax.plot([0.2, 0.2, 0], [0, 0.2, 0.2], 'k') ax.text(0.1, height/2, r"$6cm$", fontsize=14, ha='left', va='center') ax.text(radius/2, -0.3, r"$2cm$", fontsize=14, ha='center') ax.set_xlim(-3, 3) ax.set_ylim(-1, 7) ax.set_aspect('equal') ax.axis('off') [/python]
$25.13$
Global Abstract Integration
Mathverse
volume
446
Find the volume of the solid figure shown. The slant height is 8 centimeters. Round your answer to two decimal places.
[python] import numpy as np import matplotlib.pyplot as plt radius = 3 slant_height = 9 height = np.sqrt(slant_height**2 - radius**2) theta = np.linspace(0, 2*np.pi, 100) x_circle = radius * np.cos(theta) y_circle = radius/2 * np.sin(theta) fig, ax = plt.subplots(figsize=(6, 6)) ax.plot([0, -radius], [height, 0], 'k') ax.plot([0, radius], [height, 0], 'k') ax.plot(x_circle, y_circle, 'k') ax.plot([0, radius], [0, 0], 'k', lw=1) ax.text(radius * 0.5, height/2 + 0.1, '8 cm', fontsize=12, style='italic') ax.text(radius/4, -0.4, '2 cm', fontsize=12, style='italic') ax.plot(0, height, 'ko') ax.set_aspect('equal') ax.axis('off') plt.ylim(-2.5, height+1) plt.xlim(-3, 3) [/python]
$32.45$
Global Abstract Integration
Mathverse
volume
447
The diameter is 3 centimeters. Find the volume of the solid, correct to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np A = np.array([0, 0]) B = np.array([4, 0]) mid_BC = (A + B) / 2 height = 9 C = mid_BC + np.array([0, height]) plt.plot([A[0], B[0]], [A[1], B[1]], 'k') plt.plot([A[0], C[0]], [A[1], C[1]], 'k') plt.plot([B[0], C[0]], [B[1], C[1]], 'k') plt.plot([mid_BC[0], C[0]], [mid_BC[1], C[1]], 'k--') theta = np.linspace(np.pi, 2 * np.pi, 100) r = 2 x_semicircle = mid_BC[0] + r * np.cos(theta) y_semicircle = mid_BC[1] + r * np.sin(theta) plt.plot(x_semicircle, y_semicircle, 'k') plt.text(1, -0.5, r'$3cm$', fontsize=14) plt.text(3.75, 4, r'$9cm$', fontsize=14) plt.plot([2, 2.5], [0.5, 0.5], 'k') plt.plot([2.5, 2.5], [0.5, 0], 'k') plt.axis('equal') plt.axis('off') [/python]
$10.45$
Global Abstract Integration
Mathverse
volume
448
Find the volume of the solid figure pictured here. The radius is 4.1 centimeters. (Give your answer correct to 1 decimal place.)
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(5,6)) ax.fill([0, 4.3, -4.3, 0], [0, -13.5, -13.5, 0], color='olive') theta = np.linspace(0, 2*np.pi, 100) x_ellipse = 4.3 * np.cos(theta) y_ellipse = -13.5 + 1 * np.sin(theta) ax.plot(x_ellipse[50:], y_ellipse[50:], color='black') ax.plot(x_ellipse[:50], y_ellipse[:50], color='black', linestyle="--") ax.fill(x_ellipse, y_ellipse, color="olive") ax.plot([0, 0], [0, -13.5], 'k--', lw=1) ax.plot([0, 4.3], [-13.5, -13.5], 'k--', lw=1) offset = 0.3 ax.plot([0, offset], [-13.5, -13.5], color='black') ax.plot([offset, offset], [-13.5, -13.5+offset], color='black') ax.plot([0, offset], [-13.5+offset, -13.5+offset], color='black') ax.text(-1.18, -6.25, r"$12.5cm$", fontsize=14, va='center', color='black', style='italic') ax.text(2.05, -13.1, r"4.1cm", fontsize=14, ha='center', color='black', style='italic') ax.set_aspect('equal') plt.axis('off') [/python]
$220.0$
Global Abstract Integration
Mathverse
volume
449
Find the volume of the solid figure pictured. The perpendicular height is 6. (Give your answer correct to 2 decimal places.)
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(5,6)) ax.fill([0, 4.1, -4.1, 0], [0, -12.5, -12.5, 0], color='olive') theta = np.linspace(0, 2*np.pi, 100) x_ellipse = 4.1 * np.cos(theta) y_ellipse = -12.5 + 1 * np.sin(theta) ax.plot(x_ellipse[50:], y_ellipse[50:], color='black') ax.plot(x_ellipse[:50], y_ellipse[:50], color='black', linestyle="--") ax.fill(x_ellipse, y_ellipse, color="olive") ax.plot([0, 0], [0, -12.5], 'k--', lw=1) ax.plot([-4.1, 0], [-12.5, -12.5], 'k--', lw=1) offset = 0.3 #ax.plot([0, offset], [-12.5, -12.5], color='black') ax.plot([-offset, -offset], [-12.5, -12.5+offset], color='black') ax.plot([-offset, 0], [-12.5+offset, -12.5+offset], color='black') ax.text(0.2, -6.25, r"$6$", fontsize=14, va='center', color='black', style='italic') ax.text(-2.05, -13.1, r"$3$", fontsize=14, ha='center', color='black', style='italic') ax.set_aspect('equal') plt.axis('off') [/python]
$56.55$
Global Abstract Integration
Mathverse
volume
450
Find the volume of the solid figure shown. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(8,9)) circle = plt.Circle((0, 0), 3.5, fill=False, linewidth=3, color='#2c3e50') ax.add_patch(circle) theta = np.linspace(0, 2*np.pi, 100) x = 3.5 * np.cos(theta) y = 1.75 * np.sin(theta) ax.plot(x, y, linestyle="--", color='#2c3e50') ax.plot(0, 0, 'o', color='#2c3e50', markersize=10) ax.plot([0, 3.5], [0, 0], color='#2c3e50', linestyle='-', linewidth=3) ax.text(1.75, 0.1, '3 cm', fontsize=16) ax.set_aspect('equal') ax.axis('off') ax.set_xlim(-3.5, 3.5) ax.set_ylim(-3.5, 3.5) [/python]
$113.10$
Global Abstract Integration
Mathverse
volume
451
Find the volume of the solid figure shown. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(5,5)) circle = plt.Circle((0, 0), 3, fill=False, linewidth=3, color='#2c3e50') ax.add_patch(circle) theta = np.linspace(0, 2*np.pi, 100) y = 3 * np.cos(theta) x = 1.1 * np.sin(theta) ax.plot(x, y, linestyle="--", color='#2c3e50') ax.plot(0, 0, 'o', color='#2c3e50', markersize=10) ax.plot([0, 0], [3, -3], color='#2c3e50', linestyle='-', linewidth=3) ax.text(0.2, 0.1, '4 cm', fontsize=16) ax.set_aspect('equal') ax.axis('off') ax.set_xlim(-3.5, 3.5) ax.set_ylim(-3.5, 3.5) [/python]
$33.51$
Global Abstract Integration
Mathverse
volume
452
The diameter of large solid figure is 12 centimeters. Find the volume of the solid. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(8,8)) R = 9 r = 4.5 theta = np.linspace(0, np.pi, 500) x_outer = R * np.cos(theta) y_outer = R * np.sin(theta) theta_inner = np.linspace(0, np.pi, 200) x_inner = r * np.cos(theta_inner) y_inner = r * np.sin(theta_inner) + (R-r) ax.plot(x_outer, -y_outer, color='navy', lw=3, zorder=1) ellipse_x = R * np.cos(np.linspace(0, 2*np.pi, 200)) ellipse_y = 0.33 * R * np.sin(np.linspace(0, 2*np.pi, 200)) ax.plot(ellipse_x, ellipse_y, color='navy', lw=3) dash_theta = np.linspace(0, 2*np.pi, 400) dash_x = r * np.cos(dash_theta) dash_y = 0.33 * r * np.sin(dash_theta) ax.plot(dash_x[:200], dash_y[:200], 'k--', lw=2) ax.plot(dash_x[200:], dash_y[200:], 'k', lw=2) ax.plot(x_inner, y_inner-R+r, color='navy', lw=3, zorder=2) ax.annotate('', xy=(-r, 5), xytext=(r, 5), arrowprops=dict(arrowstyle='<->', lw=1.8)) ax.text(0, 5.25, "6 cm", ha='center', va='bottom', fontsize=14) ax.annotate('', xy=(-R, -9.2), xytext=(R, -9.2), arrowprops=dict(arrowstyle='<->', lw=1.8)) ax.set_aspect('equal') ax.axis('off') [/python]
$508.94$
Global Abstract Integration
Mathverse
volume
453
Find the volume of the solid shown, giving your answer correct to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(5,5)) circle = plt.Circle((0, 0), 3, fill=False, linewidth=3, color='#2c3e50') ax.add_patch(circle) theta = np.linspace(0, 2*np.pi, 100) x = 3 * np.cos(theta) y = 1.5 * np.sin(theta) ax.plot(x, y, linestyle="--", color='#2c3e50') ax.plot(0, 0, 'o', color='#2c3e50', markersize=10) ax.plot([0, 3], [0, 0], color='#2c3e50', linestyle='-', linewidth=3) ax.text(1, 0.1, '8.8 cm', fontsize=16) ax.set_aspect('equal') ax.axis('off') ax.set_xlim(-3.5, 3.5) ax.set_ylim(-3.5, 3.5) [/python]
$2854.54$
Global Abstract Integration
Mathverse
volume
454
Find the volume of the solid shown, giving your answer correct to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(5,5)) circle = plt.Circle((0, 0), 3, fill=False, linewidth=3, color='#2c3e50') ax.add_patch(circle) theta = np.linspace(0, 2*np.pi, 100) x = 3 * np.cos(theta) y = 1.5 * np.sin(theta) ax.plot(x, y, linestyle="--", color='#2c3e50') ax.plot(0, 0, 'o', color='#2c3e50', markersize=10) ax.plot([0, 3], [0, 0], color='#2c3e50', linestyle='-', linewidth=3) ax.text(1, 0.1, '22.36m', fontsize=16) ax.set_aspect('equal') ax.axis('off') ax.set_xlim(-3.5, 3.5) ax.set_ylim(-3.5, 3.5) [/python]
$46827.83$
Global Abstract Integration
Mathverse
volume
455
Find the volume of the following solid figure. Round your answer to three decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(6,4)) radius = 7 theta = np.linspace(np.pi, 2*np.pi, 100) x_semi = radius * np.cos(theta) y_semi = radius * np.sin(theta) ax.fill(x_semi, -radius-y_semi, color='#C6E6EB', zorder=1) ax.plot(x_semi, -radius-y_semi, color='#22313F', linewidth=3) a = radius b = radius/3 t = np.linspace(0, 2*np.pi, 100) x_ellipse = a * np.cos(t) y_ellipse = -radius + b * np.sin(t) ax.plot(x_ellipse, y_ellipse, color='#22313F', linewidth=2, linestyle='--') ax.fill_between(x_ellipse, y_ellipse, -radius, color='#8ED7DE', alpha=0.7, zorder=2) ax.plot([0, 0], [0, -radius], color='#22313F', linestyle='--', linewidth=2) ax.plot([0, a], [-radius, -radius], color='#22313F', linestyle='--', linewidth=2) ax.text(0.3, -radius/2, '6', fontsize=16) ax.set_aspect('equal') ax.axis('off') [/python]
$452.389$
Global Abstract Integration
Mathverse
volume
456
Find the volume of the following solid figure. Round your answer to three decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(6,4)) radius = 6 theta = np.linspace(np.pi, 2*np.pi, 100) x_semi = radius * np.cos(theta) y_semi = radius * np.sin(theta) ax.fill(x_semi, -radius-y_semi, color='#C6E6EB', zorder=1) ax.plot(x_semi, -radius-y_semi, color='#22313F', linewidth=3) a = radius b = radius/3 t = np.linspace(0, 2*np.pi, 100) x_ellipse = a * np.cos(t) y_ellipse = -radius + b * np.sin(t) ax.plot(x_ellipse, y_ellipse, color='#22313F', linewidth=2, linestyle='--') ax.fill_between(x_ellipse, y_ellipse, -radius, color='#8ED7DE', alpha=0.7, zorder=2) ax.plot([0, 0], [0, -radius], color='#22313F', linestyle='--', linewidth=2) ax.plot([0, a], [-radius, -radius], color='#22313F', linestyle='--', linewidth=2) ax.text(-3.3, -radius/2, '$25.36cm$', fontsize=16) ax.set_aspect('equal') ax.axis('off') [/python]
$34159.095$
Global Abstract Integration
Mathverse
volume
457
Consider the following solid figure with a height of 35 cm. Find the surface area of the solid figure. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np radius = 20 height = 70 theta = np.linspace(0, 2*np.pi, 100) x = radius * np.cos(theta) y = radius/2 * np.sin(theta) fig, ax = plt.subplots(figsize=(5,8)) ax.plot(x, y + height, 'k') ax.plot(x[:50], y[:50], 'k--') ax.plot(x[50:], y[50:], 'k') ax.plot([radius, radius], [height, 0], 'k') ax.plot([-radius, -radius], [height, 0], 'k') ax.annotate( '', xy=(radius + 4, height), xytext=(radius + 4, 0), arrowprops=dict(arrowstyle='-', lw=1.5) ) ax.plot([radius+3, radius+5], [height, height], color="black") ax.plot([radius+3, radius+5], [0, 0], color="black") ax.text(radius + 6, height/2, f'{35}', va='center', fontsize=12) ax.annotate( '', xy=(0, height+0.5), xytext=(-radius-0.5, height+0.5), arrowprops=dict(arrowstyle='-', lw=1.5) ) ax.plot([0, 0], [height-0.2, height+1.2], color="black") ax.plot([-radius, -radius], [height-0.2, height+1.2], color="black") ax.text(-radius/2, height + 1, f'{10}', ha='center', fontsize=12) ax.set_xlim(-radius*1.5, radius*1.5) ax.set_ylim(-radius, height + radius) ax.set_aspect('equal') ax.axis('off') [/python]
$2827.43$
Global Abstract Integration
Mathverse
area
458
The following solid figure has a base radius of 21 m. Find the surface area. Give your answer to the nearest two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np # Cylinder dimensions radius = 17 length = 36 fig, ax = plt.subplots(figsize=(8, 5)) # Draw the side edges of the cylinder ax.plot([0, length], [radius, radius], 'k') ax.plot([0, length], [-radius, -radius], 'k') # Draw the front ellipse (solid) theta = np.linspace(0, 2 * np.pi, 100) x_front = length + radius/2 * np.cos(theta) y_front = radius * np.sin(theta) ax.plot(x_front, y_front, 'k') # Draw the back ellipse (dashed) x_back = 0 + radius/2 * np.cos(theta) y_back = radius * np.sin(theta) ax.plot(x_back, y_back, 'k--') # Draw the radius on the front face ax.plot([length, length], [0, radius], 'k') ax.plot(length, 0, 'bo', markersize=3) # Center point # Add dimension lines and labels # Length ax.annotate('', xy=(0, -radius-5), xytext=(length, -radius-5), arrowprops=dict(arrowstyle='<->', lw=1.5)) ax.text(length/2, -radius-8, '49', ha='center', va='top', fontsize=12) # Radius ax.annotate('', xy=(length, 0), xytext=(length, radius), arrowprops=dict(arrowstyle='<->', lw=1.5)) ax.text(length+3, radius/2, '21', va='center', fontsize=12) # Set aspect, limits and remove axes ax.set_aspect('equal') ax.axis('off') ax.set_xlim(-radius*0.7, length+radius*1.2) ax.set_ylim(-radius*1.3, radius*1.3) plt.show() [/python]
$9236.28$
Global Abstract Integration
Mathverse
area
459
Find the surface area of the given solid figure. The radius is 98. All measurements in the diagram are in mm. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np # Cylinder parameters radius = 80 height = 82 # Plot setup fig, ax = plt.subplots(figsize=(7,5)) ax.set_xlim(-120, 160) ax.set_ylim(-70, 90) # Angles for ellipse theta = np.linspace(0, 2*np.pi, 100) # Top ellipse (at y = height/2) x_top = radius * np.cos(theta) y_top = 0.25 * radius * np.sin(theta) + height/2 # Bottom ellipse (at y = -height/2) x_bot = radius * np.cos(theta) y_bot = 0.25 * radius * np.sin(theta) - height/2 # Draw top and bottom ellipses ax.plot(x_top, y_top, 'k') ax.plot(x_bot, y_bot, 'k', linestyle='dashed') # Draw sides ax.plot([-radius, -radius], [-height/2, height/2], 'k') ax.plot([radius, radius], [-height/2, height/2], 'k') # Draw radius annotation ax.plot([0, radius], [height/2, height/2], 'b', marker='o') ax.text(radius/2, height/2+7, '98', ha='center', va='bottom', fontsize=12) # Draw height annotation with double arrow ax.annotate( '', xy=(radius+15, height/2), xytext=(radius+15, -height/2), arrowprops=dict(arrowstyle='<->', linewidth=2)) ax.text(radius+22, 0, '80', va='center', fontsize=12) # Remove axes ax.axis('off') plt.show() [/python]
$109603.88$
Global Abstract Integration
Mathverse
area
460
Find the height $h$ mm of this closed solid figure if its surface area (S) is 27288(mm)^2. Round your answer to the nearest whole number.
[python] import matplotlib.pyplot as plt import numpy as np radius = 20 height = 70 theta = np.linspace(0, 2*np.pi, 100) x = radius * np.cos(theta) y = radius/2 * np.sin(theta) fig, ax = plt.subplots(figsize=(5,8)) ax.plot(x, y + height, 'k') ax.plot(x[:50], y[:50], 'k--') ax.plot(x[50:], y[50:], 'k') ax.plot([radius, radius], [height, 0], 'k') ax.plot([-radius, -radius], [height, 0], 'k') ax.annotate( '', xy=(radius + 4, height), xytext=(radius + 4, 0), arrowprops=dict(arrowstyle='-', lw=1.5) ) ax.plot([radius+3, radius+5], [height, height], color="black") ax.plot([radius+3, radius+5], [0, 0], color="black") ax.text(radius + 6, height/2, '$hmm$', va='center', fontsize=12) ax.annotate( '', xy=(0, height+0.5), xytext=(-radius-0.5, height+0.5), arrowprops=dict(arrowstyle='-', lw=1.5) ) ax.plot([0, 0], [height-0.2, height+1.2], color="black") ax.plot([-radius, -radius], [height-0.2, height+1.2], color="black") ax.text(-radius/2, height + 1, '$43mm$', ha='center', fontsize=12) ax.set_xlim(-radius*1.5, radius*1.5) ax.set_ylim(-radius, height + radius) ax.set_aspect('equal') ax.axis('off') [/python]
$58$
Global Abstract Integration
Mathverse
length
461
A solid figure has a surface area of 54105(mm)^2. What must the height $h$ mm of the solid figure be? Round your answer to the nearest whole number.
[python] import matplotlib.pyplot as plt import numpy as np radius = 20 height = 70 theta = np.linspace(0, 2*np.pi, 100) x = radius * np.cos(theta) y = radius/2 * np.sin(theta) fig, ax = plt.subplots(figsize=(5,8)) ax.plot(x, y + height, 'k') ax.plot(x[:50], y[:50], 'k--') ax.plot(x[50:], y[50:], 'k') ax.plot([radius, radius], [height, 0], 'k') ax.plot([-radius, -radius], [height, 0], 'k') ax.annotate( '', xy=(radius + 4, height), xytext=(radius + 4, 0), arrowprops=dict(arrowstyle='-', lw=1.5) ) ax.plot([radius+3, radius+5], [height, height], color="black") ax.plot([radius+3, radius+5], [0, 0], color="black") ax.text(radius + 6, height/2, '$hmm$', va='center', fontsize=12) ax.annotate( '', xy=(0, height+0.5), xytext=(-radius-0.5, height+0.5), arrowprops=dict(arrowstyle='-', lw=1.5) ) ax.plot([0, 0], [height-0.2, height+1.2], color="black") ax.plot([-radius, -radius], [height-0.2, height+1.2], color="black") ax.text(-radius/2, height + 1, '$79mm$', ha='center', fontsize=12) ax.set_xlim(-radius*1.5, radius*1.5) ax.set_ylim(-radius, height + radius) ax.set_aspect('equal') ax.axis('off') [/python]
$30$
Global Abstract Integration
Mathverse
length
462
Find the surface area of the solid figure shown. The radius is 6 cm. Give your answer to the nearest two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np radius = 7 height = 12 fig, ax = plt.subplots(figsize=(6,10)) theta = np.linspace(0, 2*np.pi, 100) x_top = radius * np.cos(theta) y_top = radius/2 * np.sin(theta) + height x_bottom = radius * np.cos(theta) y_bottom = radius/2 * np.sin(theta) ax.plot([radius, radius], [height, 0], color='k') ax.plot([-radius, -radius], [height, 0], color='k') ax.plot(x_top, y_top, color='k') ax.plot(x_bottom[50:], y_bottom[50:], color='k') theta_hidden = np.linspace(np.pi, 2*np.pi, 100) x_hidden = radius * np.cos(theta_hidden) y_hidden = radius/2 * np.sin(theta_hidden) + height ax.plot(x_hidden, y_hidden, color='k', alpha=0.3, linestyle='dashed') ax.plot([0, radius], [height, height], color='k') ax.text(radius/2, height+0.5, '6 cm', fontsize=12, style='italic', ha='center') ax.text(radius+1.5, height/2, '10 cm', fontsize=12, style='italic', ha='center') ax.set_xlim(-10, 12) ax.set_ylim(-6, 16) ax.set_aspect('equal') ax.axis('off') [/python]
$603.19$
Global Abstract Integration
Mathverse
area
463
Find the surface area of the solid figure shown. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(5,5)) circle = plt.Circle((0, 0), 3, fill=False, linewidth=3, color='#19bfa7') ax.add_patch(circle) theta = np.linspace(0, 2*np.pi, 100) x = 3 * np.cos(theta) y = 1.5 * np.sin(theta) ax.plot(x, y, linestyle="--", color='#19bfa7') ax.plot(0, 0, 'o', color='#2c3e50', markersize=10) ax.plot([0, 3], [0, 0], linestyle='--', linewidth=3, color="blue") ax.text(1, 0.1, '11cm', fontsize=16) ax.set_aspect('equal') ax.axis('off') ax.set_xlim(-3.5, 3.5) ax.set_ylim(-3.5, 3.5) [/python]
$1520.53$
Global Abstract Integration
Mathverse
area
464
Find the surface area of the solid figure shown. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(5,5)) circle = plt.Circle((0, 0), 3, fill=False, linewidth=3, color='#2c3e50') ax.add_patch(circle) theta = np.linspace(0, 2*np.pi, 100) y = 3 * np.cos(theta) x = 1.1 * np.sin(theta) ax.plot(x, y, linestyle="--", color='#2c3e50') ax.plot(0, 0, 'o', color='#2c3e50', markersize=10) ax.plot([0, 0], [3, -3], color='#2c3e50', linestyle='-', linewidth=3) ax.text(0.2, 0.1, '9 cm', fontsize=16) ax.set_aspect('equal') ax.axis('off') ax.set_xlim(-3.5, 3.5) ax.set_ylim(-3.5, 3.5) [/python]
$254.47$
Global Abstract Integration
Mathverse
area
465
Find the surface area of the following solid figure. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np # Set up the plot fig, ax = plt.subplots(figsize=(6,6)) radius = 30 # Draw the main circle (sphere) circle = plt.Circle((0, 0), radius, fill=False, color='black') ax.add_artist(circle) # Draw the dashed radius (equator perspective) theta = np.linspace(0, 2*np.pi, 200) x_ellipse = radius * np.cos(theta) y_ellipse = 0.4 * radius * np.sin(theta) # Slightly "flatten" to suggest equator ax.plot(x_ellipse, y_ellipse, 'k--') # Draw the radius line ax.plot([0, radius], [0, 0], 'k') # Add the radius text plt.text(radius/2-5, 1, '56.17 $mm$', fontsize=14, fontstyle='italic') # Formatting ax.set_aspect('equal') ax.set_xlim(-radius*1.2, radius*1.2) ax.set_ylim(-radius*1.2, radius*1.2) ax.axis('off') plt.show() [/python]
$39647.77$
Global Abstract Integration
Mathverse
area
466
What is the area of the circular base of the solid figure? Round your answer to three decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(6,4)) radius = 7 theta = np.linspace(np.pi, 2*np.pi, 100) x_semi = radius * np.cos(theta) y_semi = radius * np.sin(theta) ax.fill(x_semi, -radius-y_semi, color='olive', zorder=1) ax.plot(x_semi, -radius-y_semi, color='#22313F', linewidth=3) a = radius b = radius/3 t = np.linspace(0, 2*np.pi, 100) x_ellipse = a * np.cos(t) y_ellipse = -radius + b * np.sin(t) ax.plot(x_ellipse, y_ellipse, color='#22313F', linewidth=2, linestyle='--') ax.fill_between(x_ellipse, y_ellipse, -radius, color='olive', alpha=0.7, zorder=2) ax.plot([0, 0], [0, -radius], color='#22313F', linestyle='--', linewidth=2) ax.plot([0, a], [-radius, -radius], color='#22313F', linestyle='--', linewidth=2) ax.text(0.3, -radius/2, '6', fontsize=16) ax.set_aspect('equal') ax.axis('off') [/python]
$113.097$
Global Abstract Integration
Mathverse
area
467
Find the total surface area. Round your answer to three decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(6,4)) radius = 7 theta = np.linspace(np.pi, 2*np.pi, 100) x_semi = radius * np.cos(theta) y_semi = radius * np.sin(theta) ax.fill(x_semi, -radius-y_semi, color='olive', zorder=1) ax.plot(x_semi, -radius-y_semi, color='#22313F', linewidth=3) a = radius b = radius/3 t = np.linspace(0, 2*np.pi, 100) x_ellipse = a * np.cos(t) y_ellipse = -radius + b * np.sin(t) ax.plot(x_ellipse, y_ellipse, color='#22313F', linewidth=2, linestyle='--') ax.fill_between(x_ellipse, y_ellipse, -radius, color='olive', alpha=0.7, zorder=2) ax.plot([0, 0], [0, -radius], color='#22313F', linestyle='--', linewidth=2) ax.plot([0, a], [-radius, -radius], color='#22313F', linestyle='--', linewidth=2) ax.text(0.3, -radius/2, '8', fontsize=16) ax.set_aspect('equal') ax.axis('off') [/python]
$603.186$
Global Abstract Integration
Mathverse
area
468
Find the surface area of the following solid figure. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(6,4)) radius = 7 theta = np.linspace(np.pi, 2*np.pi, 100) x_semi = radius * np.cos(theta) y_semi = radius * np.sin(theta) ax.fill(x_semi, -radius-y_semi, color='olive', zorder=1) ax.plot(x_semi, -radius-y_semi, color='#22313F', linewidth=3) a = radius b = radius/3 t = np.linspace(0, 2*np.pi, 100) x_ellipse = a * np.cos(t) y_ellipse = -radius + b * np.sin(t) ax.plot(x_ellipse, y_ellipse, color='#22313F', linewidth=2, linestyle='--') ax.fill_between(x_ellipse, y_ellipse, -radius, color='olive', alpha=0.7, zorder=2) ax.plot([0, 0], [0, -radius], color='#22313F', linestyle='--', linewidth=2) ax.plot([0, a], [-radius, -radius], color='#22313F', linestyle='--', linewidth=2) ax.text(-2, -radius/2, '$74.74cm$', fontsize=16) ax.set_aspect('equal') ax.axis('off') [/python]
$52647.45$
Global Abstract Integration
Mathverse
area
469
One side of the left solid figure is 33. The height of middle solid figure is 11. Find the surface area of the solid. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np import matplotlib.patches as patches fig, ax = plt.subplots(figsize=(8,4)) width, height = 15, 20 # 梯形前底为14,上底10,高3,左偏移2,右偏移2 # 前侧梯形 A = np.array([0, 0]) B = np.array([width, 0]) D = A + np.array([0, height]) C = B + np.array([0, height]) # 棱柱厚度 dx, dy = -5, 6 dxy = np.array([dx, dy]) # 后面四个点 A1 = A + dxy B1 = B + dxy C1 = C + dxy D1 = D + dxy x0 = np.array([25, 0]) A2 = A + x0 B2 = B + x0 C2 = C + x0 D2 = D + x0 A3, B3, C3, D3 = A1 + x0, B1 + x0, C1 + x0, D1 + x0 for X, Y in [(A, B), (B, C), (C, D), (D, A)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k') for X, Y in [(C1, D1), (D1, A1), (D, D1), (C, C1), (A, A1), (A2, A3)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k') for X, Y in [(A2, B2), (B2, C2), (C2, D2), (D2, A2)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k') for X, Y in [(C3, D3), (D3, A3), (D2, D3), (C2, C3)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k') for X, Y in [(A1, B1), (B1, C1), (A3, B3), (B3, C3), (B, B1), (B2, B3)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k--') # Big cylinder base main1 = patches.Arc(((B1[0] + B[0])/2, ((B1[1] + C1[1])/2 + (B[1] + C[1])/2)/2), 3, 13, theta1=0, theta2=360, color='black', linewidth=2, linestyle='--') #ax.plot([0, 0], [0, 0], 'ko') ax.add_patch(main1) main2 = patches.Arc(((A2[0] + A3[0])/2, ((A1[1] + D1[1])/2 + (A[1] + D[1])/2)/2), 3, 13, theta1=270, theta2=90, color='black', linewidth=2) main3 = patches.Arc(((A2[0] + A3[0])/2, ((A1[1] + D1[1])/2 + (A[1] + D[1])/2)/2), 3, 13, theta1=90, theta2=270, color='black', linewidth=2, linestyle='--') #ax.plot([0, 0], [0, 0], 'ko') ax.add_patch(main2) ax.add_patch(main3) ax.plot([(B1[0] + B[0])/2, (A2[0] + A3[0])/2], [((B1[1] + C1[1])/2 + (B[1] + C[1])/2)/2 + 6.5, ((B1[1] + C1[1])/2 + (B[1] + C[1])/2)/2 + 6.5], 'k') ax.plot([(B1[0] + B[0])/2, (A2[0] + A3[0])/2], [((B1[1] + C1[1])/2 + (B[1] + C[1])/2)/2 - 6.5, ((B1[1] + C1[1])/2 + (B[1] + C[1])/2)/2 - 6.5], 'k') ax.plot([B[0], A2[0]], [-2, -2], 'k') ax.plot([B[0], B[0]], [-1, -3], 'k') ax.plot([A2[0], A2[0]], [-1, -3], 'k') ax.plot([(A2[0] + A3[0])/2, (A2[0] + A3[0])/2], [((A1[1] + D1[1])/2 + (A[1] + D[1])/2)/2, ((A1[1] + D1[1])/2 + (A[1] + D[1])/2)/2+6.5], 'k') ax.text(B2[0] + 1, C[1]/2, r"$20$", fontsize=12, style='italic') ax.text((B2[0] + A2[0])/2, -2, r"$25$", fontsize=12, style='italic') ax.text((A2[0] + A3[0])/2-1.2, ((A1[1] + D1[1])/2 + (A[1] + D[1])/2)/2+0.5, r"$6$", fontsize=10, style='italic') ax.set_aspect('equal') ax.axis('off') plt.xlim(-8, 60) plt.ylim(-5, 30) plt.tight_layout() plt.show() [/python]
$8128.50$
Global Abstract Integration
Mathverse
area
470
Find the surface area of the composite figure shown. The radius is 4 cm. Round your answer to two decimal places.
[python] import numpy as np import matplotlib.pyplot as plt radius = 4 height = 9 fig = plt.figure(figsize=(6, 12)) ax = fig.add_subplot(111) theta = np.linspace(0, np.pi, 100) x_hemisphere = radius * np.cos(theta) y_hemisphere = -radius * np.sin(theta) x_cone = np.array([-radius, 0, radius]) y_cone = np.array([0, height, 0]) ax.plot(x_hemisphere, y_hemisphere, color='deepskyblue', linewidth=4) ax.fill_between(x_hemisphere, y_hemisphere, 0, color='deepskyblue', alpha=0.6) theta = np.linspace(0, 2*np.pi, 200) x_circle = radius * np.cos(theta) y_circle = radius/ 5 * np.sin(theta) ax.plot(x_circle, y_circle, color="deepskyblue", linewidth=4) ax.fill_between(x_circle, y_circle, 0, color="gray") ax.plot([-radius, 0], [0, height], color='gray') ax.plot([radius, 0], [0, height], color='gray') ax.plot([0, 0], [0, height], 'k--', lw=1) ax.text(0.1, height/1.7, r'$10cm$', fontsize=15) ax.plot([0, radius], [0, 0], 'black', linestyle='dashed') ax.plot([0.5, 0.5], [0, 0.5], color='black') ax.plot([0, 0.5], [0.5, 0.5], color='black') ax.axis('off') ax.set_aspect('equal') ax.set_xlim(-7, 7) ax.set_ylim(-6, 13) [/python]
$235.87$
Global Abstract Integration
Mathverse
area
471
The height of the bottom solid figure is 33.1 mm. Hence find the total surface area of the shape, correct to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np # Parameters diameter = 9 radius = diameter / 2 height = 18 fig, ax = plt.subplots(figsize=(4, 6)) theta = np.linspace(np.pi, 2 * np.pi, 100) x = radius * np.cos(theta) y = radius * 0.25 * np.sin(theta) - height ax.plot(x, y, color='teal', linewidth=2) top_y = 0 top_ellipse = radius * np.cos(theta) top_ellipse_y = radius * 0.25 * np.sin(theta) + top_y ax.plot(top_ellipse, top_ellipse_y, color='teal', linewidth=2, alpha=1, solid_capstyle='round') theta = np.linspace(0, np.pi, 100) ax.plot(radius * np.cos(theta), radius * 0.25 * np.sin(theta) - height, '--', color='teal', alpha=0.5, linewidth=2) ax.plot(radius * np.cos(theta), radius * 0.25 * np.sin(theta), '--', color='teal', alpha=0.5, linewidth=2) ax.plot([radius, radius], [top_y, -height], color='teal', linewidth=2) ax.plot([-radius, -radius], [top_y, -height], color='teal', linewidth=2) theta2 = np.linspace(0, np.pi, 100) x2 = radius * np.cos(theta2) y2 = radius * np.sin(theta2) ax.plot(x2, y2, color='teal', linewidth=2) ax.annotate( '', xy=(0, -height-2), xytext=(radius, -height-2), arrowprops=dict(arrowstyle='<->', color='#43536D', linewidth=2) ) ax.text(radius/2, -height-3, f"10.5 mm", ha='center', va='top', fontsize=14, color="#43536D") ax.plot([radius+1.2, radius+1.2], [-height, 0], color='#43536D', linewidth=2) ax.plot([radius+0.8, radius+1.6], [0, 0], color='#43536D', linewidth=2) ax.plot([radius+0.8, radius+1.6], [-height, -height], color='#43536D', linewidth=2) ax.set_aspect('equal') ax.axis('off') [/python]
$3222.80$
Global Abstract Integration
Mathverse
area
472
A solid figure has one side of length 14cm as shown. If the size of \angle DFH is \theta °, find theta to two decimal places.
[python] import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.art3d import Poly3DCollection length = 9 width = 4 height = 4 C = np.array([0, width, height]) B = np.array([length, width, height]) A = np.array([length, 0, height]) D = np.array([0, 0, height]) F = np.array([length, width, 0]) E = np.array([length, 0, 0]) H = np.array([0, 0, 0]) G = np.array([0, width, 0]) verts = [A, B, C, D, E, F, G, H] fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(111, projection='3d') for point, name in zip(verts, ['A','B','C','D','E','F','G','H']): ax.scatter(*point, s=40) ax.text(*(point + np.array([0.2,0.2,0.2])), name, fontsize=12, color='k') edges = [ (C, B), (B, A), (A, D), (D, C), (E, F), (E, H), (G, H), (G, F), (C, G), (B, F), (A, E), (D, H) ] for edge in edges: ax.plot(*zip(*edge), color='k') ax.plot(*zip(*[D, F]), 'r--') ax.plot(*zip(*[H, F]), 'g--') ax.plot(*zip(*[E, F]), 'b--') arc_radius = 0.5 angle = np.arctan(width/length) angle_values = np.linspace(0, angle, 30) arc_x = length - arc_radius * np.cos(angle_values) arc_y = width - arc_radius * np.sin(angle_values) arc_z = np.zeros_like(arc_x) ax.plot(arc_x, arc_y, arc_z, 'b') ax.text(length-0.3, width-1, 0, r'$\theta$', color='b', fontsize=16) ax.set_xlim([-.5, length+1]) ax.set_ylim([-.5, width+1]) ax.set_zlim([-.5, height+1]) ax.text(0, width, height/2, '3 cm', color='k', fontsize=12) ax.text(-0.5, width/3, height+0.3, '3 cm', color='k', fontsize=12) ax.text(length/2, 1.5, -0.5, 'z cm', color='k', fontsize=12) ax.set_box_aspect([2,1,1]) ax.axis('off') plt.tight_layout() [/python]
$11.83$
Global Abstract Integration
Mathverse
angle
473
All edges of the following solid are 7 cm long.Find z, the size of \angle AGH, correct to 2 decimal places.
[python] import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(4, 3)) O = [0, 0] A = [-5.1, 4.1] B = [5.1, 4.1] C = [5.1, -4.1] D = [-5.1, -4.1] E = [2, 6] F = [12.2, 6] G = [12.2, -2.2] H = [2, -2.2] ax.plot([A[0], B[0]], [A[1], B[1]], color='black') ax.plot([B[0], C[0]], [B[1], C[1]], color='black') ax.plot([C[0], D[0]], [C[1], D[1]], color='black') ax.plot([D[0], A[0]], [D[1], A[1]], color='black') ax.plot([E[0], F[0]], [E[1], F[1]], color='black') ax.plot([F[0], G[0]], [F[1], G[1]], color='black') ax.plot([G[0], C[0]], [G[1], C[1]], color='black') ax.plot([A[0], E[0]], [A[1], E[1]], color='black') ax.plot([B[0], F[0]], [B[1], F[1]], color='black') for X, Y in [(H, E), (H, D), (H, G)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k') ax.text(A[0]-1, A[1], r"$D$", fontsize=12, style='italic') ax.text(B[0]-0.5, B[1]+0.5, r"$C$", fontsize=12, style='italic') ax.text(C[0], C[1]-1, r"$G$", fontsize=12, style='italic') ax.text(D[0], D[1]-1, r"$H$", fontsize=12, style='italic') ax.text(E[0], E[1]+0.5, r"$A$", fontsize=12, style='italic') ax.text(F[0], F[1]+0.5, r"$B$", fontsize=12, style='italic') ax.text(G[0], G[1]-1, r"$F$", fontsize=12, style='italic') ax.text(H[0]-1, H[1], r"$E$", fontsize=12, style='italic') ax.axis('off') plt.tight_layout() plt.show() [/python]
$54.74$
Global Abstract Integration
Mathverse
angle
474
Find the length of AF, where $AB=2, BC=3, CD=6$.
[python] import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.art3d import Poly3DCollection import numpy as np A = np.array([0, 0, 0]) B = np.array([1, 0, 0]) C = np.array([1, 1, 0]) D = np.array([0, 1, 0]) E = np.array([1, 1, 1.5]) F = np.array([0, 1, 1.5]) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') verts = [A, B, C, D, E, F] edges = [ [A, B], [B, C], [E, F], [A, E], [A, F], [B, E], [C, E] ] for edge in edges: ax.plot(*zip(*edge), color='black', linestyle='-', linewidth=1) edges = [[A,D], [C, D], [F, D]] for edge in edges: ax.plot(*zip(*edge), color='black', linestyle='--', linewidth=1) ax.plot(*zip(A, E), color='red', linewidth=2) labels = ['A', 'B', 'D', 'C', 'E', 'F'] label_indices = [0, 1, 3, 2, 4, 5] for label, idx in zip(labels, label_indices): ax.text(*(verts[idx] + 0.05), label, fontsize=12) ax.set_box_aspect([1,1,1.5]) ax.view_init(20, -30) ax.axis('off') [/python]
$7$
Global Abstract Integration
Mathverse
length
475
The solid is 3 cm thick. Calculate the volume of the solid, correct to one decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(4,4)) theta1 = 24 theta2 = 66 r = 9 angle = np.deg2rad(np.linspace(theta1, theta2, 200)) x_arc = r * np.cos(angle) y_arc = r * np.sin(angle) ax.plot(x_arc, y_arc, color="black") ax.plot([0, x_arc[0]], [0, y_arc[0]], color="black") ax.plot([0, x_arc[-1]], [0, y_arc[-1]], color="black") ax.plot([0, 0], [0, -0.3], color="black") ax.plot([x_arc[0], x_arc[0]], [y_arc[0], y_arc[0]-0.3], color="black") ax.plot([0, x_arc[0]], [-0.3, y_arc[0]-0.3], color="black") ax.text(1.2, 1.3, r"$42^\circ$", fontsize=16) arc_mid = 0 x_label = (r+0.2)*np.cos(np.deg2rad(arc_mid))/2 y_label = (r+0.2)*np.sin(np.deg2rad(arc_mid)) +1 ax.text(x_label, y_label-0.4, "9", fontsize=16, ha='center') ax.set_aspect('equal') ax.set_xlim(-1.5, r+1) ax.set_ylim(-1.5, r+2) ax.axis('off') plt.tight_layout() plt.show()[/python]
$89.1$
Global Abstract Integration
Mathverse
volume
476
Find the volume of the figure shown, correct to two decimal places. The height of both solid figures is 2 cm.
[python] import matplotlib.pyplot as plt import matplotlib.patches as patches fig, ax = plt.subplots(figsize=(6,6)) main = patches.Arc((0, 0), 18, 4, theta1=180, theta2=360, color='black', linewidth=2) ax.add_patch(main) top_main = patches.Arc((0, 3), 18, 4, theta1=-204, theta2=24, color='black', linewidth=2) ax.add_patch(top_main) small = patches.Arc((0, 3), 8, 2, theta1=180, theta2=360, color='black', linewidth=2) ax.add_patch(small) ax.plot([-4, -4], [3, 7], color='black', linewidth=2) ax.plot([4, 4], [3, 7], color='black', linewidth=2) ax.plot([-9, -9], [0, 3], color='black', linewidth=2) ax.plot([9, 9], [0, 3], color='black', linewidth=2) top_small = patches.Ellipse((0, 7), 8, 2, fill=False, color='black', linewidth=2) ax.add_patch(top_small) ax.plot([0, 9], [0, 0], color='black') ax.plot([0, 0], [0, 0], 'ko') ax.text(4.5, 0.1, "$\\bf{9\\ cm}$", fontsize=14, style='italic') ax.plot([0, 4], [7, 7], color='black') ax.plot([0, 0], [7, 7], 'ko') ax.text(2, 7.3, "$\\bf{4\\ cm}$", fontsize=14, style='italic') ax.set_aspect('equal') ax.set_xlim(-12, 15) ax.set_ylim(-4, 12) ax.axis('off') plt.show()[/python]
$609.47$
Global Abstract Integration
Mathverse
volume
477
Find the volume of the figure shown. The middle solid figure has a diameter of 3 cm and height of 10 cm. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.patches import Arrow fig, ax = plt.subplots(figsize=(6, 6)) ellipse_width = 8.1 ellipse_height = 1 rect_height = 2.1 small_cylinder_width = 3.1 small_ellipse_height = 0.8 small_cylinder_height = 6 top_center = (0, small_cylinder_height/2 + rect_height) top_ellipse = patches.Arc( top_center, ellipse_width, ellipse_height*2, angle=0, theta1=0, theta2=360, linewidth=1.5, color='black' ) ax.plot([0, ellipse_width / 2], [small_cylinder_height/2 + rect_height, small_cylinder_height/2 + rect_height], color='black') ax.text(ellipse_width / 4, small_cylinder_height/2 + rect_height + 0.1, "$\\bf{8\\ cm}$", fontsize=8) ax.add_patch(top_ellipse) ax.add_line(plt.Line2D( [ellipse_width/2, ellipse_width/2], [small_cylinder_height/2 + rect_height, small_cylinder_height/2 + rect_height - rect_height], color='black' )) ax.add_line(plt.Line2D( [-ellipse_width/2, -ellipse_width/2], [small_cylinder_height/2 + rect_height, small_cylinder_height/2 + rect_height - rect_height], color='black' )) ax.plot([ellipse_width/2 + 1, ellipse_width/2 + 1], [small_cylinder_height/2 + rect_height, -small_cylinder_height/2 - rect_height], color='black') ax.plot([ellipse_width/2 + 1.1, ellipse_width/2 + 0.9], [small_cylinder_height/2 + rect_height, small_cylinder_height/2 + rect_height], color='black') ax.plot([ellipse_width/2 + 1.1, ellipse_width/2 + 0.9], [small_cylinder_height/2, small_cylinder_height/2], color='black') ax.plot([ellipse_width/2 + 1.1, ellipse_width/2 + 0.9], [small_cylinder_height/2 + rect_height, small_cylinder_height/2 + rect_height], color='black') ax.plot([ellipse_width/2 + 1.1, ellipse_width/2 + 0.9], [-small_cylinder_height/2 - rect_height, -small_cylinder_height/2 - rect_height], color='black') ax.plot([ellipse_width/2 + 1.1, ellipse_width/2 + 0.9], [-small_cylinder_height/2, -small_cylinder_height/2], color='black') ax.text(ellipse_width/2 + 1.2, (small_cylinder_height + rect_height)/2, "$\\bf{2\\ cm}$", fontsize=8) ax.text(ellipse_width/2 + 1.2, -(small_cylinder_height + rect_height)/2, "$\\bf{2\\ cm}$", fontsize=8) arrow1 = Arrow( x=0, y=-rect_height/2, dx=small_cylinder_width/2, dy=0, width=0.2, color='black' ) arrow2 = Arrow( x=0, y=-rect_height/2, dx=-small_cylinder_width/2, dy=0, width=0.2, color='black' ) ax.add_patch(arrow1) ax.add_patch(arrow2) bottom_center = (0, -small_cylinder_height/2 - rect_height) bottom_ellipse = patches.Arc( bottom_center, ellipse_width, ellipse_height*2, angle=0, theta1=180, theta2=360, linewidth=1.5, color='black' ) ax.add_patch(bottom_ellipse) ax.add_line(plt.Line2D( [ellipse_width/2, ellipse_width/2], [-small_cylinder_height/2 - rect_height, -small_cylinder_height/2], color='black' )) ax.add_line(plt.Line2D( [-ellipse_width/2, -ellipse_width/2], [-small_cylinder_height/2 - rect_height, -small_cylinder_height/2], color='black' )) top_inner_ellipse = patches.Arc( (0, small_cylinder_height/2), ellipse_width, ellipse_height*2, angle=0, theta1=180, theta2=360, linewidth=1.2, color='black' ) ax.plot([0, ellipse_width / 2], [-small_cylinder_height/2 - rect_height - 1.3, -small_cylinder_height/2 - rect_height - 1.3], color='black') ax.text(ellipse_width / 4, -small_cylinder_height/2 - rect_height - 1.7, "$\\bf{8\\ cm}$", fontsize=8) ax.plot([0, 0], [-small_cylinder_height/2 - rect_height - 1.2, -small_cylinder_height/2 - rect_height - 1.4], color='black') ax.plot([ellipse_width / 2, ellipse_width / 2], [-small_cylinder_height/2 - rect_height - 1.2, -small_cylinder_height/2 - rect_height - 1.4], color='black') ax.add_patch(top_ellipse) ax.add_patch(top_inner_ellipse) bottom_inner_ellipse = patches.Arc( (0, -small_cylinder_height/2), ellipse_width, ellipse_height*2, theta1=-211, theta2=31, linewidth=1.2, color='black' ) ax.add_patch(bottom_inner_ellipse) ax.add_line(plt.Line2D( [small_cylinder_width/2, small_cylinder_width/2], [-small_cylinder_height/2, small_cylinder_height/2 - 1], color='black' )) ax.add_line(plt.Line2D( [-small_cylinder_width/2, -small_cylinder_width/2], [-small_cylinder_height/2, small_cylinder_height/2 - 1], color='black' )) mid_top = (0, small_cylinder_height/2) mid_bottom = (0, -small_cylinder_height/2) mid_ellipse_bottom = patches.Arc( mid_bottom, small_cylinder_width, small_ellipse_height, theta1=180, theta2=360, color='black' ) ax.add_patch(mid_ellipse_bottom) ax.set_xlim(-6, 6) ax.set_ylim(-10, 7) ax.set_aspect('equal') ax.axis('off') plt.show()[/python]
$874.93$
Global Abstract Integration
Mathverse
volume
478
The radius of hole is 2cm. Find the volume of the solid, correct to two decimal places.
[python] import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(4, 3)) O = [0, 0] A = [-5, 4] B = [5, 4] C = [5, -4] D = [-5, -4] E = [2, 10] F = [12, 10] G = [12, 2] ax.plot([A[0], B[0]], [A[1], B[1]], color='black') ax.plot([B[0], C[0]], [B[1], C[1]], color='black') ax.text(B[0] + 0.5, 0, "$\\bf{8\\ cm}$", fontsize=11) ax.plot([C[0], D[0]], [C[1], D[1]], color='black') ax.plot([D[0], A[0]], [D[1], A[1]], color='black') ax.plot([E[0], F[0]], [E[1], F[1]], color='black') ax.plot([F[0], G[0]], [F[1], G[1]], color='black') ax.plot([G[0], C[0]], [G[1], C[1]], color='black') ax.text((C[0] + G[0]) / 2 + 0.5, (C[1] + G[1]) / 2 - 0.5, "$\\bf{14\\ cm}$", fontsize=11) ax.plot([A[0], E[0]], [A[1], E[1]], color='black') ax.plot([B[0], F[0]], [B[1], F[1]], color='black') top_small = patches.Circle((0, 0), 2, fill=False, color='black', linewidth=2) ax.plot([0, 2], [0, 0], color='black') ax.add_patch(top_small) ax.text(0 - 1.3, -A[1] - 1, "$\\bf{10\\ cm}$", fontsize=11) ax.axis('off') plt.tight_layout() plt.show()[/python]
$944.07$
Global Abstract Integration
Mathverse
volume
479
Find the total surface area of the solid with a side length equal to 6 cm.
[python] import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(4, 3)) O = [0, 0] A = [-5.1, 4.1] B = [5.1, 4.1] C = [5.1, -4.1] D = [-5.1, -4.1] E = [2, 6] F = [12.2, 6] G = [12.2, -2.2] ax.plot([A[0], B[0]], [A[1], B[1]], color='black') ax.plot([B[0], C[0]], [B[1], C[1]], color='black') ax.plot([C[0], D[0]], [C[1], D[1]], color='black') ax.plot([D[0], A[0]], [D[1], A[1]], color='black') ax.plot([E[0], F[0]], [E[1], F[1]], color='black') ax.plot([F[0], G[0]], [F[1], G[1]], color='black') ax.plot([G[0], C[0]], [G[1], C[1]], color='black') ax.plot([A[0], E[0]], [A[1], E[1]], color='black') ax.plot([B[0], F[0]], [B[1], F[1]], color='black') ax.plot([0, 0], [-3.8, -4.4], color='black') ax.plot([0, 0], [3.8, 4.4], color='black') ax.plot([0, 0], [-3.8, -4.4], color='black') ax.plot([7.1, 7.1], [5.7, 6.3], color='black') ax.plot([-4.8, -5.4], [0, 0], color='black') ax.plot([11.9, 12.4], [2, 2], color='black') ax.plot([4.8, 5.4], [0, 0], color='black') ax.plot([-1.6, -1.3], [5.40, 4.80], color='black') ax.plot([8.6, 8.8], [-2.8, -3.4], color='black') ax.text(0 - 1.3, -A[1] - 1, "$\\bf{6\\ cm}$", fontsize=11) ax.axis('off') plt.tight_layout() plt.show()[/python]
$216$
Global Abstract Integration
Mathverse
area
480
Find the surface area of the solid figure with length equal to 12 m.
[python] import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(4, 3)) O = [0, 0] A = [-5.1, 3.1] B = [5.1, 3.1] C = [5.1, -3.1] D = [-5.1, -3.1] E = [5, 10] F = [15.2, 10] G = [15.2, 3.8] ax.plot([A[0], B[0]], [A[1], B[1]], color='black') ax.plot([B[0], C[0]], [B[1], C[1]], color='black') ax.plot([C[0], D[0]], [C[1], D[1]], color='black') ax.plot([D[0], A[0]], [D[1], A[1]], color='black') ax.plot([E[0], F[0]], [E[1], F[1]], color='black') ax.plot([F[0], G[0]], [F[1], G[1]], color='black') ax.plot([G[0], C[0]], [G[1], C[1]], color='black') ax.plot([A[0], E[0]], [A[1], E[1]], color='black') ax.plot([B[0], F[0]], [B[1], F[1]], color='black') ax.text(0 - 1.3, -A[1] - 1, "$\\bf{6\\ m}$", fontsize=11) ax.text(A[0] - 4, 0, "$\\bf{4\\ m}$", fontsize=11) ax.axis('off') plt.tight_layout() plt.show()[/python]
$288$
Global Abstract Integration
Mathverse
area
481
Find the surface area of the solid figure shown. The height is 21 cm.
[python] import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(4, 3)) A = [0, 4.8] B = [-2.5, 0] C = [2.5, 0] E = [10, 10] F = [12.5, 5.2] ax.plot([A[0], B[0]], [A[1], B[1]], color='black') ax.plot([B[0], C[0]], [B[1], C[1]], color='black') ax.plot([C[0], A[0]], [C[1], A[1]], color='black') ax.plot([E[0], F[0]], [E[1], F[1]], color='black') ax.plot([A[0], E[0]], [A[1], E[1]], color='black') ax.plot([C[0], F[0]], [C[1], F[1]], color='black') ax.text(-1, -1, "$\\bf{12\\ cm}$", fontsize=11) ax.text(1.7, 2.4, "$\\bf{10\\ cm}$", fontsize=11) ax.plot([B[0] - 0.5, B[0] - 0.5], [A[1], 0], color='black') ax.plot([B[0] - 0.7, B[0] - 0.3], [A[1], A[1]], color='black') ax.plot([B[0] - 0.7, B[0] - 0.3], [0, 0], color='black') ax.plot([0, 0.5, 0.5], [0.5, 0.5, 0], color='black') ax.plot([0, 0], [A[1], 0], color='black', linestyle='--') ax.plot([C[0], F[0]], [C[1], F[1]], color='black') ax.plot([C[0], F[0]], [C[1], F[1]], color='black') ax.plot([B[0]/2 - 0.4, B[0]/2 + 0.4], [2.6, 2.3], color='black') ax.plot([C[0]/2 - 0.4, C[0]/2 + 0.4], [2.3, 2.6], color='black') ax.text(B[0] - 3, 2.4, "$\\bf{8\\ cm}$", fontsize=11) ax.axis('off') plt.tight_layout() plt.show()[/python]
$768$
Global Abstract Integration
Mathverse
area
482
Find the surface area of the solid figure shown. The height is 20 cm.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(5,7)) A = np.array([0, 0]) B = np.array([10, 0]) C = np.array([3.6, -4.8]) A0 = C * 0.9 B0 = A0 + 0.1* (B - C) C0 = C + 0.1* (B - C) dy = 12 A1 = A + np.array([0, dy]) B1 = B + np.array([0, dy]) C1 = C + np.array([0, dy]) A10 = A0 + np.array([0, dy]) B10 = B0 + np.array([0, dy]) C10 = C0 + np.array([0, dy]) for p1, p2 in [(B,C), (C,A), (A1,B1), (B1,C1), (C1,A1), (A,A1), (B,B1), (C,C1), (A0, B0), (B0, C0), (A10, B10), (B10, C10)]: ax.plot([p1[0], p2[0]],[p1[1], p2[1]],'k', lw=1.5) ax.plot([A[0], B[0]], [A[1], B[1]], 'k--') ax.text(1, -2.5, r'$6\,cm$', fontsize=14, ha='center', va='top', style='italic') ax.text(4, dy+0.45, r'$10\,cm$', fontsize=14, ha='left', va='center', style='italic') ax.text(9, -2.65, r'$8\,cm$', fontsize=14, ha='right', va='center', style='italic') ax.axis('equal') ax.axis('off') plt.show()[/python]
$528$
Global Abstract Integration
Mathverse
area
483
Find the surface area of the solid prism. The bottom face has edges of 18cm and 8cm.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(8,4)) A = np.array([0, 0]) B = np.array([14, 0]) C = np.array([12, 3]) D = np.array([2, 3]) w = 5 A1 = A + np.array([w, w]) B1 = B + np.array([w, w]) C1 = C + np.array([w, w]) D1 = D + np.array([w, w]) front = np.array([A,B,C,D,A]) ax.plot(front[:,0], front[:,1], 'k', lw=3) back = np.array([B1,C1,D1]) ax.plot(back[:,0], back[:,1], 'k', lw=3) ax.plot([B[0],B1[0]], [B[1],B1[1]], 'k', lw=3) ax.plot([C[0],C1[0]], [C[1],C1[1]], 'k', lw=3) ax.plot([D[0],D1[0]], [D[1],D1[1]], 'k', lw=3) ax.plot([7,7],[0,3],'k--', lw=2) ax.text(7.3,1.1,'3 cm',fontsize=13, va='center') ax.text(7, 3.5, '10 cm', fontsize=13, ha='center', va='bottom') ax.text(0, 2.2, '5 cm', fontsize=13, ha='right', va='center') ax.text(18, 7, '5 cm', fontsize=13, ha='left', va='center') ax.set_aspect('equal') ax.axis('off') ax.set_xlim(-2,20) ax.set_ylim(-1,10) plt.tight_layout() plt.show()[/python]
$338$
Global Abstract Integration
Mathverse
area
484
Find the surface area of this solid. The thickness of the solid is 3cm.
[python] import matplotlib.pyplot as plt import numpy as np dx, dy = -3, 3 A = np.array([0, 0]) B = np.array([w1, 0]) C = np.array([w1-w2, h1]) D = np.array([0, h1]) E = np.array([w1, h2]) F = np.array([w1-w2, h2]) A_ = A + np.array([dx, dy]) B_ = B + np.array([dx, dy]) C_ = C + np.array([dx, dy]) D_ = D + np.array([dx, dy]) F_ = F + np.array([dx, dy]) E_ = E + np.array([dx, dy]) ax = plt.gca() for p1, p2 in [(A,B),(B,E),(E,F),(F,C), (C, D), (D, A)]: ax.plot([p1[0], p2[0]], [p1[1], p2[1]], color='k') for p1, p2 in [(A,A_),(C,C_),(D,D_), (E,E_), (F,F_), (A_, D_), (D_, C_), (F_, C_), (E_, F_)]: ax.plot([p1[0],p2[0]], [p1[1],p2[1]], color='k') ax.plot([E[0], F[0]], [E[1], F[1]], color='k') ax.text(-4, h1/2+dy, '8cm', va='center', ha='right', fontsize=13, fontstyle='italic') ax.text(w1/2, -1.4, '17cm', va='top', ha='center', fontsize=13, fontstyle='italic') ax.text(w1 + 1, h2/2, '16cm', va='center', ha='left', fontsize=13, fontstyle='italic') ax.text(w1-w2/2+dx, h2+dy+0.6, '4cm', va='bottom', ha='center', fontsize=13, fontstyle='italic') ax.set_aspect('equal') ax.axis('off') plt.xlim(-6, 28) plt.ylim(-4, 22) plt.tight_layout() plt.show()[/python]
$534$
Global Abstract Integration
Mathverse
area
485
Find the surface area of the following solid prism. The right rectangle surface has one edge of 10cm. Give your answer to the nearest one decimal place.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(7,7)) height = 10 depth = 3 width = 13 dx, dy = 5, 3.5 A = np.array([0,0]) B = np.array([width,0]) C = np.array([width, depth]) D = np.array([0,height]) A1 = A + np.array([dx,dy]) B1 = B + np.array([dx,dy]) C1 = C + np.array([dx,dy]) D1 = D + np.array([dx,dy]) ax.plot([A[0],B[0]],[A[1],B[1]],'k') ax.plot([B[0],C[0]],[B[1],C[1]],'k') ax.plot([C[0],D[0]],[C[1],D[1]],'k') ax.plot([D[0],A[0]],[D[1],A[1]],'k') ax.plot([A1[0],B1[0]],[A1[1],B1[1]],'k--') ax.plot([B1[0],C1[0]],[B1[1],C1[1]],'k') ax.plot([B1[0],B[0]],[B1[1],B[1]],'k') ax.plot([C1[0],D1[0]],[C1[1],D1[1]],'k') ax.plot([D1[0],A1[0]],[D1[1],A1[1]],'k--') ax.plot([D[0],D1[0]],[D[1],D1[1]],'k') ax.plot([C[0],C1[0]], [C[1],C1[1]], 'k') ax.plot([A[0], A1[0]], [A[1], A1[1]], 'k--') ax.text(width/2-0.8, -1.1, r'$13\,cm$', fontsize=15, style='italic') ax.text(-1.0, height/2, r'$10\,cm$', fontsize=15, style='italic', va='center', ha='right') ax.text(width+dx+0.5, dy+depth/2, r'$3\,cm$', fontsize=15, style='italic', va='center', ha='left') ax.text((A1[0]+B1[0])/2+0.5, (C1[1]+D1[1])/2+1, r'$y\,cm$', fontsize=15, style='italic', ha='center') ax.set_aspect('equal') ax.axis('off') plt.xlim(-4, width+dx+depth+2) plt.ylim(-3, max(height,dy+height)+depth+2) plt.tight_layout() plt.show()[/python]
$577.0$
Global Abstract Integration
Mathverse
area
486
Find the total surface area of the solid figure shown.
[python] import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(4, 3)) A = [0, 4.8] B = [-2.5, 0] C = [2.5, 0] E = [10, 10] F = [12.5, 5.2] ax.plot([A[0], B[0]], [A[1], B[1]], color='black') ax.plot([B[0], C[0]], [B[1], C[1]], color='black') ax.plot([C[0], A[0]], [C[1], A[1]], color='black') ax.plot([E[0], F[0]], [E[1], F[1]], color='black') ax.plot([A[0], E[0]], [A[1], E[1]], color='black') ax.plot([C[0], F[0]], [C[1], F[1]], color='black') ax.text(-1, -1, "$\\bf{12\\ cm}$", fontsize=11) ax.text(1.7, 2.4, "$\\bf{10\\ cm}$", fontsize=11) ax.plot([B[0] - 0.5, B[0] - 0.5], [A[1], 0], color='black') ax.plot([B[0] - 0.7, B[0] - 0.3], [A[1], A[1]], color='black') ax.plot([B[0] - 0.7, B[0] - 0.3], [0, 0], color='black') ax.plot([0, 0.5, 0.5], [0.5, 0.5, 0], color='black') ax.plot([0, 0], [A[1], 0], color='black', linestyle='--') ax.plot([C[0], F[0]], [C[1], F[1]], color='black') ax.plot([C[0], F[0]], [C[1], F[1]], color='black') ax.plot([B[0]/2 - 0.4, B[0]/2 + 0.4], [2.6, 2.3], color='black') ax.plot([C[0]/2 - 0.4, C[0]/2 + 0.4], [2.3, 2.6], color='black') ax.text(B[0] - 3, 2.4, "$\\bf{x\\ cm}$", fontsize=11) ax.axis('off') plt.tight_layout() plt.show()[/python]
$608$
Global Abstract Integration
Mathverse
area
487
Find the surface area of the figure shown. The height is 3 cm. Give your answer to the nearest two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(7,7)) height = 10 width = 15 width1 = 8 dx, dy = 5, 3.5 A = np.array([0,0]) B = np.array([width,0]) C = np.array([width1, height]) D = np.array([0, height]) A1 = A + np.array([dx,dy]) B1 = B + np.array([dx,dy]) C1 = C + np.array([dx,dy]) D1 = D + np.array([dx,dy]) ax.plot([A[0],B[0]],[A[1],B[1]],'k') ax.plot([B[0],C[0]],[B[1],C[1]],'k') ax.plot([C[0],D[0]],[C[1],D[1]],'k') ax.plot([D[0],A[0]],[D[1],A[1]],'k') ax.plot([B1[0],C1[0]],[B1[1],C1[1]],'k') ax.plot([B1[0],B[0]],[B1[1],B[1]],'k') ax.plot([C1[0],D1[0]],[C1[1],D1[1]],'k') ax.plot([D[0],D1[0]],[D[1],D1[1]],'k') ax.plot([C[0],C1[0]], [C[1],C1[1]], 'k') ax.text(width/2-0.8, -1.1, r'$12\,cm$', fontsize=15, style='italic') ax.text(-1.0, height/2, r'$5\,cm$', fontsize=15, style='italic', va='center', ha='right') ax.text((A[0]+C[0])/2+0.5, C[1]+0.5, r'$9\,cm$', fontsize=15, style='italic', ha='center') ax.set_aspect('equal') ax.axis('off') plt.xlim(-4, width+dx+depth+2) plt.ylim(-3, max(height,dy+height)+depth+2) plt.tight_layout() plt.show()[/python]
$200.49$
Global Abstract Integration
Mathverse
area
488
Find the surface area of the figure shown.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(8,6)) bar_width = 16 bar_depth = 3 bar_height = 3 vert_width = 4 vert_height = 7 vert_depth = 1 dx, dy = 2, 1.2 A = np.array([0, 0]) B = np.array([bar_width, 0]) C = np.array([bar_width, bar_height]) D = np.array([0, bar_height]) A1 = A + np.array([dx, dy]) B1 = B + np.array([dx, dy]) C1 = C + np.array([dx, dy]) D1 = D + np.array([dx, dy]) left_margin = (bar_width - vert_width) / 2 right_margin = left_margin + vert_width E = np.array([left_margin, 0]) F = E + np.array([vert_width, 0]) G = F + np.array([0, -vert_height]) H = E + np.array([0, -vert_height]) E1 = E + np.array([dx, dy]) F1 = F + np.array([dx, dy]) G1 = G + np.array([dx, dy]) H1 = H + np.array([dx, dy]) for X, Y in [(A,B), (B,C), (C,D), (D,A), (B,B1), (C,C1), (D,D1), (B1,C1), (C1,D1)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k') for X, Y in [(F,G),(G,H),(H,E),(G,G1)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k') ax.plot([F1[0],G1[0]], [F1[1]-1.3,G1[1]], 'k') ax.text(bar_width/2, 2.5, r"$12\,cm$", ha='center', va='top', fontsize=14, style='italic') ax.text(-0.7, bar_height/2, r"$1\,cm$", ha='right', va='center', fontsize=14, style='italic') ax.text(bar_width+dx-1, bar_height/2-dy-0.5, r"$1\,cm$", ha='left', va='center', fontsize=14, style='italic') ax.text((left_margin+vert_width/2 + 4), -vert_height-0.5, r"$1\,cm$", ha='center', va='bottom', fontsize=14, style='italic') ax.text((left_margin+vert_width/2), -vert_height-1, r"$4\,cm$", ha='center', va='bottom', fontsize=14, style='italic') ax.text(left_margin-0.2, -vert_height/2, r"$7\,cm$", ha='right', va='center', fontsize=14, style='italic') ax.plot([bar_width/6, bar_width/6], [0.35, -0.35], 'k') ax.plot([bar_width*5/6, bar_width*5/6], [0.35, -0.35], 'k') ax.set_aspect('equal') ax.axis('off') plt.xlim(-2, 20) plt.ylim(-15, 10) plt.tight_layout() plt.show()[/python]
$120$
Global Abstract Integration
Mathverse
area
489
Find the surface area of the solid figure. The height is 6 cm. Round your answer to one decimal place.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(5,4)) a = 10 h = a * np.sqrt(3) / 2 O = np.array([0, 0]) E = np.array([0, 10]) A = np.array([-a/2 - h/2, -h/2]) B = np.array([a - h/2, -h/2]) dx, dy = h/2, h A1 = A + np.array([dx, dy]) B1 = B + np.array([dx, dy]) for X, Y in [(A, A1), (B,B1), (A,B), (A,E), (A1,E), (B,E), (B1,E)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k') ax.plot([E[0],0],[E[1],0], 'k--') ax.plot([A1[0],B1[0]],[A1[1],B1[1]], 'k--') ax.text((B[0]+B1[0])/2+0.5, 0, r"$10\,cm$", fontsize=12, style='italic') ax.plot([(A[0]+B[0])/2, (A[0]+B[0])/2], [A[1]-0.3, A[1]+0.3], 'k') ax.plot([(A1[0]+B1[0])/2, (A1[0]+B1[0])/2], [A1[1]-0.3, A1[1]+0.3], 'k') ax.plot([(A[0]+A1[0])/2-0.25, (A[0]+A1[0])/2+0.25], [0.20, -0.20], 'k', lw=2) ax.plot([(B[0]+B1[0])/2-0.25, (B[0]+B1[0])/2+0.25], [0.20, -0.20], 'k', lw=2) ax.plot([0, 1, 1], [1, 1, 0], color='black') ax.set_aspect('equal') ax.axis('off') plt.xlim(-a, a) plt.ylim(-a, h+2) plt.tight_layout() plt.show()[/python]
$256.2$
Global Abstract Integration
Mathverse
area
490
Find the surface area of the solid shown. The radius is 3cm. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt import matplotlib.patches as patches fig, ax = plt.subplots(figsize=(4,3)) ellipse = patches.Ellipse((0, 0), 16, 6, fill=False, color='black', linewidth=2) ax.add_patch(ellipse) ax.plot([-8, 0, 8], [0, 14, 0], color='black') ax.plot([0, 8], [0, 0], color='black') ax.text(4.5, 7.5, r"$10\,cm$", fontsize=12, style='italic') ax.set_aspect('equal') ax.set_xlim(-12, 12) ax.set_ylim(-4, 18) ax.axis('off') plt.show()[/python]
$122.52$
Global Abstract Integration
Mathverse
area
491
The solid figure has a diameter of 4cm. Find the surface area of the solid formed, correct to two decimal places.
[python] import matplotlib.pyplot as plt import matplotlib.patches as patches fig, ax = plt.subplots(figsize=(5,5)) width = 20 height = 4 ellipse1 = patches.Ellipse((0, 0), width, height, fill=False, color='black', linewidth=2) ellipse2 = patches.Ellipse((0, 10), width/2, height/2, fill=False, color='black', linewidth=2) ax.add_patch(ellipse1) ax.add_patch(ellipse2) ax.plot([-width/2, -width/4, width/4, width/2, -width/2], [0, 10, 10, 0, 0], color='black') ax.plot([0, 8], [0, 0], color='black') ax.plot([-width/4, 0, width/4], [10, 20, 10], 'k--', color='black') ax.plot([1, width/2 + 1.5], [21, 0.5], color='black') ax.plot([0.5, 1.5], [20.75, 21.5], color='black') ax.plot([width/4 + 0.75, width/4 + 1.75], [10.5, 11.25], color='black') ax.plot([width/2 + 1, width/2 + 2], [0, 0.5], color='black') ax.plot([0, 0], [10, 10], 'ko') ax.plot([0, 0], [0, 0], 'ko') ax.text(width/3 + 2.5, 5, r"$8\,cm$", fontsize=12, style='italic') ax.text(width/4 - 0.5, 15, r"$8\,cm$", fontsize=12, style='italic') ax.text(-1, 7.5, r"$2\,cm$", fontsize=11, style='italic') ax.set_aspect('equal') ax.set_xlim(-width, width) ax.set_ylim(-4, 30) ax.axis('off') plt.show()[/python]
$91.11$
Global Abstract Integration
Mathverse
area
492
Find the surface area of the solid figure. The perpendicular height is 8mm. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(5,4)) a = 11 h = a * np.sqrt(3) / 2 O = np.array([0, 0]) E = np.array([0, 20]) A = np.array([-a/2 - h/2, -h/2]) B = np.array([a - h/2, -h/2]) dx, dy = h/2, h A1 = A + np.array([dx, dy]) B1 = B + np.array([dx, dy]) for X, Y in [(B,B1), (A,B), (A,E), (B,E), (B1,E)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k') ax.plot([E[0],0],[E[1],0], 'k--') ax.plot([A1[0],B1[0]],[A1[1],B1[1]], 'k--') ax.plot([A[0], A1[0]], [A[1], A1[1]], 'k--') ax.plot([A1[0], E[0]], [A1[1], E[1]], 'k--') ax.text((B[0]+B1[0])/2+1, 0, r"$10\,mm$", fontsize=11, style='italic') ax.text(-dx + 1, A[1]-1.5, r"$10\,mm$", fontsize=11, style='italic') ax.text(0-4, E[1]/2-2, r"$8\,mm$", fontsize=11, style='italic') ax.plot([0, 1, 1], [1, 1, 0], color='black') ax.set_aspect('equal') ax.axis('off') plt.xlim(-a, a) plt.ylim(-a, 20) plt.tight_layout() plt.show()[/python]
$288.6$
Global Abstract Integration
Mathverse
area
493
Find the surface area of the solid figure given. The slant height is 13.7cm. Give your answer correct to 2 decimal places.
[python] import matplotlib.pyplot as plt import matplotlib.patches as patches fig, ax = plt.subplots(figsize=(5,4)) ellipse = patches.Ellipse((0, 0), 7, 20, fill=False, color='black', linewidth=2) ax.add_patch(ellipse) E = np.array([-25, 0]) ax.plot([0, E[0], 0], [10, 0, -10], color='black', linewidth=2) ax.plot([0, 0], [0, -10], 'k--', linewidth=2) ax.text(-2, 1, r"$9.1\,cm$", fontsize=10, style='italic') ax.text(E[0]/2-3, 6.5, r"$13.7\,cm$", fontsize=10, style='italic') ax.plot([0, 0], [0, 0], 'ko') ax.set_aspect('equal') ax.set_xlim(-28, 5) ax.set_ylim(-16, 18) ax.axis('off') plt.show()[/python]
$651.82$
Global Abstract Integration
Mathverse
area
494
Find the surface area of the solid figure shown. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(4, 3)) h = 8 A = np.array([0, 4.8]) B = np.array([-2.5, 0]) C = np.array([2.5, 0]) E = np.array([10, 10]) F = np.array([12.5, 5.2]) B1 = B + np.array([0, -h]) C1 = C + np.array([0, -h]) F1 = F + np.array([0, -h]) for X, Y in [(B,B1), (C,C1), (B1,C1), (C1,F1), (F,F1)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k', color='black') ax.plot([A[0], B[0]], [A[1], B[1]], color='black') ax.plot([B[0], C[0]], [B[1], C[1]], color='black') ax.plot([C[0], A[0]], [C[1], A[1]], color='black') ax.plot([E[0], F[0]], [E[1], F[1]], color='black') ax.plot([A[0], E[0]], [A[1], E[1]], color='black') ax.plot([C[0], F[0]], [C[1], F[1]], color='black') ax.plot([B[0] - 0.5, B[0] - 0.5], [A[1], 0], color='black') ax.plot([B[0] - 0.7, B[0] - 0.3], [A[1], A[1]], color='black') ax.plot([B[0] - 0.7, B[0] - 0.3], [0, 0], color='black') ax.plot([0, 0.5, 0.5], [0.5, 0.5, 0], color='black') ax.plot([0, 0], [A[1], 0], color='black', linestyle='--') ax.plot([C[0], F[0]], [C[1], F[1]], color='black') ax.plot([C[0], F[0]], [C[1], F[1]], color='black') ax.plot([B[0]/2 - 0.4, B[0]/2 + 0.4], [2.6, 2.3], color='black') ax.plot([C[0]/2 - 0.4, C[0]/2 + 0.4], [2.3, 2.6], color='black') ax.text(B[0] - 3, 2.4, "$\\bf{3\\ m}$", fontsize=11) ax.text(B[0] - 3, -h/2, "$\\bf{6\\ m}$", fontsize=11) ax.text(-1, -h-1.5, "$\\bf{5\\ m}$", fontsize=11) ax.text((C1[0] + F1[0])/2, (C1[1] + F1[1])/2-1, "$\\bf{10\\ m}$", fontsize=11) ax.axis('off') plt.tight_layout() plt.show()[/python]
$323.10$
Global Abstract Integration
Mathverse
area
495
Find the surface area of the figure shown, rounded to two decimal places. The height is 12 cm.
[python] import matplotlib.pyplot as plt import matplotlib.patches as patches fig, ax = plt.subplots(figsize=(6,6)) r = 9 main = patches.Arc(O, r, r, theta1=90, theta2=360, color='black', linewidth=2) ax.add_patch(main) dx, dy = 12, 6 dxy = np.array([dx, dy]) O = np.array([0, 0]) O1 = O + np.array([dx, dy]) backend1 = patches.Arc(O1, r, r, theta1=90, theta2=120, color='black', linewidth=2) backend2 = patches.Arc(O1, r, r, theta1=120, theta2=300, color='black', linewidth=2, linestyle='--') backend3 = patches.Arc(O1, r, r, theta1=300, theta2=360, color='black', linewidth=2) ax.add_patch(backend1) ax.add_patch(backend2) ax.add_patch(backend3) A = [0, r/2] B = [r/2, 0] C = [-r/4, r*1.7/4] D = [r/4, -r*1.7/4] A1 = A + dxy B1 = B + dxy C1 = C + dxy D1 = D + dxy for X, Y in [(O,O1), (A, O), (B, O), (A1, O1), (B1, O1), (A, A1), (B, B1), (C, C1), (D, D1)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k') ax.text(1, -1, "$\\bf{5\\ cm}$", fontsize=10, style='italic') ax.set_aspect('equal') ax.set_xlim(-12, 20) ax.set_ylim(-6, 12) ax.axis('off') plt.show()[/python]
$520.55$
Global Abstract Integration
Mathverse
area
496
The middle solid has radius of 6 and height of 11. Find the surface area of the solid. Round your answer to two decimal places.
[python] import matplotlib.pyplot as plt import numpy as np import matplotlib.patches as patches fig, ax = plt.subplots(figsize=(8,4)) width, height = 15, 20 A = np.array([0, 0]) B = np.array([width, 0]) D = A + np.array([0, height]) C = B + np.array([0, height]) dx, dy = -5, 6 dxy = np.array([dx, dy]) A1 = A + dxy B1 = B + dxy C1 = C + dxy D1 = D + dxy x0 = np.array([25, 0]) A2 = A + x0 B2 = B + x0 C2 = C + x0 D2 = D + x0 A3, B3, C3, D3 = A1 + x0, B1 + x0, C1 + x0, D1 + x0 for X, Y in [(A, B), (B, C), (C, D), (D, A)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k') for X, Y in [(C1, D1), (D1, A1), (D, D1), (C, C1), (A, A1), (A2, A3)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k') for X, Y in [(A2, B2), (B2, C2), (C2, D2), (D2, A2)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k') for X, Y in [(C3, D3), (D3, A3), (D2, D3), (C2, C3)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k') for X, Y in [(A1, B1), (B1, C1), (A3, B3), (B3, C3), (B, B1), (B2, B3)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k--') main1 = patches.Arc(((B1[0] + B[0])/2, ((B1[1] + C1[1])/2 + (B[1] + C[1])/2)/2), 3, 13, theta1=0, theta2=360, color='black', linewidth=2, linestyle='--') ax.add_patch(main1) main2 = patches.Arc(((A2[0] + A3[0])/2, ((A1[1] + D1[1])/2 + (A[1] + D[1])/2)/2), 3, 13, theta1=270, theta2=90, color='black', linewidth=2) main3 = patches.Arc(((A2[0] + A3[0])/2, ((A1[1] + D1[1])/2 + (A[1] + D[1])/2)/2), 3, 13, theta1=90, theta2=270, color='black', linewidth=2, linestyle='--') ax.add_patch(main2) ax.add_patch(main3) ax.plot([(B1[0] + B[0])/2, (A2[0] + A3[0])/2], [((B1[1] + C1[1])/2 + (B[1] + C[1])/2)/2 + 6.5, ((B1[1] + C1[1])/2 + (B[1] + C[1])/2)/2 + 6.5], 'k') ax.plot([(B1[0] + B[0])/2, (A2[0] + A3[0])/2], [((B1[1] + C1[1])/2 + (B[1] + C[1])/2)/2 - 6.5, ((B1[1] + C1[1])/2 + (B[1] + C[1])/2)/2 - 6.5], 'k') ax.plot([B[0], A2[0]], [-2, -2], 'k') ax.plot([B[0], B[0]], [-1, -3], 'k') ax.plot([A2[0], A2[0]], [-1, -3], 'k') ax.plot([(A2[0] + A3[0])/2, (A2[0] + A3[0])/2], [((A1[1] + D1[1])/2 + (A[1] + D[1])/2)/2, ((A1[1] + D1[1])/2 + (A[1] + D[1])/2)/2+6.5], 'k') ax.text(B2[0] + 1, C[1]/2, r"$20\,cm$", fontsize=12, style='italic') ax.text((B2[0] + A2[0])/2, -2, r"$25\,cm$", fontsize=12, style='italic') ax.text((B2[0] + B3[0])/2, (C3[1] + C2[1])/2, r"$33\,cm$", fontsize=12, style='italic') ax.set_aspect('equal') ax.axis('off') plt.xlim(-8, 60) plt.ylim(-5, 30) plt.tight_layout() plt.show()[/python]
$8128.50$
Global Abstract Integration
Mathverse
area
497
Given the following solid. The length of the base is 10cm. Find the volume of the solid.
[python] import matplotlib.pyplot as plt import numpy as np fig, ax = plt.subplots(figsize=(5,4)) a = 10 h = a * np.sqrt(3) / 2 O = np.array([0, 0]) E = np.array([0, 10]) A = np.array([-a/2 - h/2, -h/2]) B = np.array([a - h/2, -h/2]) dx, dy = h/2, h A1 = A + np.array([dx, dy]) B1 = B + np.array([dx, dy]) for X, Y in [(A, A1), (B,B1), (A,B), (A,E), (A1,E), (B,E), (B1,E)]: ax.plot([X[0],Y[0]], [X[1],Y[1]], 'k') ax.plot([E[0],0],[E[1],0], 'k--') ax.plot([A1[0],B1[0]],[A1[1],B1[1]], 'k--') ax.text((B[0]+B1[0])/2+0.5, 0, r"$10\,cm$", fontsize=12, style='italic') ax.text(-3, 2, r"$6\,cm$", fontsize=12, style='italic') ax.plot([(A[0]+B[0])/2, (A[0]+B[0])/2], [A[1]-0.3, A[1]+0.3], 'k') ax.plot([(A1[0]+B1[0])/2, (A1[0]+B1[0])/2], [A1[1]-0.3, A1[1]+0.3], 'k') ax.plot([(A[0]+A1[0])/2-0.25, (A[0]+A1[0])/2+0.25], [0.20, -0.20], 'k', lw=2) ax.plot([(B[0]+B1[0])/2-0.25, (B[0]+B1[0])/2+0.25], [0.20, -0.20], 'k', lw=2) ax.plot([0, 1, 1], [1, 1, 0], color='black') ax.set_aspect('equal') ax.axis('off') plt.xlim(-a, a) plt.ylim(-a, h+2) plt.tight_layout() plt.show()[/python]
$200$
Global Abstract Integration
Mathverse
volume
498
Consider the two similar solids shown. The larger solid has a radius of 12 cm. Find the volume of solid A, in simplest exact form.
[python] import matplotlib.pyplot as plt import matplotlib.patches as patches fig, ax = plt.subplots(figsize=(6,6)) r = 6 R = 10 OA = [0, 0] OB = [10, 0] mainA1 = patches.Arc(OA, r, r, theta1=00, theta2=360, color='black', linewidth=2) mainA2 = patches.Arc(OA, r, 2, theta1=00, theta2=360, color='black', linewidth=2) ax.add_patch(mainA1) ax.add_patch(mainA2) ax.plot([0, r/2], [0, 0], color='black') mainB1 = patches.Arc(OB, R, R, theta1=0, theta2=360, color='black', linewidth=2) mainB2 = patches.Arc(OB, r, R, theta1=0, theta2=360, color='black', linewidth=2) ax.add_patch(mainB1) ax.add_patch(mainB2) ax.plot([OB[0], OB[0]], [0, R/2], color='black') ax.text(-1, -0.1, r"$3$", fontsize=10, style='italic') ax.text(0, r/2+1, r"$A$", fontsize=12, style='italic') ax.text(OB[0], R/2+1, r"$B$", fontsize=12, style='italic') ax.set_aspect('equal') ax.set_xlim(-5, 20) ax.set_ylim(-6, 6) ax.axis('off') plt.show()[/python]
$36$
Global Abstract Integration
Mathverse
volume
499
Consider the two solids shown. The larger solid has a radius of 12 cm. What is the ratio of the volume of solid B to solid A?
[python] import matplotlib.pyplot as plt import matplotlib.patches as patches fig, ax = plt.subplots(figsize=(6,6)) r = 6 R = 10 OA = [0, 0] OB = [10, 0] mainA1 = patches.Arc(OA, r, r, theta1=00, theta2=360, color='black', linewidth=2) mainA2 = patches.Arc(OA, r, 2, theta1=00, theta2=360, color='black', linewidth=2) ax.add_patch(mainA1) ax.add_patch(mainA2) ax.plot([0, r/2], [0, 0], color='black') mainB1 = patches.Arc(OB, R, R, theta1=0, theta2=360, color='black', linewidth=2) mainB2 = patches.Arc(OB, r, R, theta1=0, theta2=360, color='black', linewidth=2) ax.add_patch(mainB1) ax.add_patch(mainB2) ax.plot([OB[0], OB[0]], [0, R/2], color='black') ax.text(-1, -0.1, r"$3$", fontsize=10, style='italic') ax.text(0, r/2+1, r"$A$", fontsize=12, style='italic') ax.text(OB[0], R/2+1, r"$B$", fontsize=12, style='italic') ax.set_aspect('equal') ax.set_xlim(-5, 20) ax.set_ylim(-6, 6) ax.axis('off') plt.show()[/python]
$64$
Global Abstract Integration
Mathverse
ratio
500
Two similar solids as shown in the figure, the larger solid has volumes of 5760\mathrm{cm}^3. Find the fully simplified ratio of the volume of the larger solid to the volume of the smaller solid.
[python] import matplotlib.pyplot as plt import matplotlib.patches as patches fig, ax = plt.subplots(figsize=(6,6)) r = 5 R = 10 H, h = 15, 10 OA = [0, 0] OA1 = [0, H] OB = [15, 0] OB1 = [15, h] mainA1 = patches.Arc((0, 0), R, r, theta1=0, theta2=180, color='black', linewidth=2, linestyle='--') mainA2 = patches.Arc((0, 0), R, r, theta1=180, theta2=360, color='black', linewidth=2) mainA3 = patches.Arc((0, H), R, r, theta1=0, theta2=360, color='black', linewidth=2) mainB1 = patches.Arc((15, 0), r, 3, theta1=0, theta2=180, color='black', linewidth=2, linestyle="--") mainB2 = patches.Arc((15, 0), r, 3, theta1=180, theta2=360, color='black', linewidth=2) mainB3 = patches.Arc((15, h), r, 3, theta1=0, theta2=360, color='black', linewidth=2) ax.add_patch(mainA1) ax.add_patch(mainA2) ax.add_patch(mainA3) ax.add_patch(mainB1) ax.add_patch(mainB2) ax.add_patch(mainB3) ax.plot([-R/2, -R/2], [0, H], color='black') ax.plot([R/2, R/2], [0, H], color='black') ax.plot([15-r/2, 15-r/2], [0, h], color='black') ax.plot([15+r/2, 15+r/2], [0, h], color='black') ax.text(12, -4, r"$Volume\,= \,90\,cm^3$", fontsize=12, style='italic') ax.text(R/2+1, H/2, r"$c\,\,cm$", fontsize=12, style='italic') ax.text(15+r/2+1, h/2, r"$20\,\,cm$", fontsize=12, style='italic') ax.set_aspect('equal') ax.set_xlim(-8, 20) ax.set_ylim(-6, 20) ax.axis('off') plt.show()[/python]
$100$
Global Abstract Integration
Mathverse
ratio