deberta-v3-threat-detection

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4902
  • Accuracy: 0.8399
  • Precision: 0.8295
  • Recall: 0.8231
  • F1: 0.8263
  • Mcc: 0.6778
  • Auc: 0.9040
  • Specificity: 0.8543
  • Sensitivity: 0.8231
  • True Positives: 107
  • True Negatives: 129
  • False Positives: 22
  • False Negatives: 23

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Mcc Auc Specificity Sensitivity True Positives True Negatives False Positives False Negatives
0.4019 1.0 71 0.4525 0.8292 0.8868 0.7231 0.7966 0.6621 0.8957 0.9205 0.7231 94 139 12 36
0.3181 2.0 142 0.4287 0.8399 0.8102 0.8538 0.8315 0.6800 0.8993 0.8278 0.8538 111 125 26 19
0.2571 3.0 213 0.4333 0.8292 0.8661 0.7462 0.8017 0.6587 0.9017 0.9007 0.7462 97 136 15 33
0.2318 4.0 284 0.4991 0.8327 0.8487 0.7769 0.8112 0.6637 0.9047 0.8808 0.7769 101 133 18 29
0.1753 5.0 355 0.4902 0.8399 0.8295 0.8231 0.8263 0.6778 0.9040 0.8543 0.8231 107 129 22 23

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
35
Safetensors
Model size
0.2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for align-ric/model

Finetuned
(501)
this model

Evaluation results