AraT5: Text-to-Text Transformers for Arabic Language Generation
Paper
•
2109.12068
•
Published
This model is ready to use for Question Generation task, simply input the text and answer, the model will generate a question, This model is a fine-tuned version of AraT5-Base Model
Get the Question from given Context and a Answer : Arabic QG Model
#Requirements: !pip install transformers
from transformers import AutoTokenizer,AutoModelForSeq2SeqLM
model = AutoModelForSeq2SeqLM.from_pretrained("MIIB-NLP/Arabic-question-generation")
tokenizer = AutoTokenizer.from_pretrained("MIIB-NLP/Arabic-question-generation")
def get_question(context,answer):
text="context: " +context + " " + "answer: " + answer + " </s>"
text_encoding = tokenizer.encode_plus(
text,return_tensors="pt"
)
model.eval()
generated_ids = model.generate(
input_ids=text_encoding['input_ids'],
attention_mask=text_encoding['attention_mask'],
max_length=64,
num_beams=5,
num_return_sequences=1
)
return tokenizer.decode(generated_ids[0],skip_special_tokens=True,clean_up_tokenization_spaces=True).replace('question: ',' ')
context="الثورة الجزائرية أو ثورة المليون شهيد، اندلعت في 1 نوفمبر 1954 ضد المستعمر الفرنسي ودامت 7 سنوات ونصف. استشهد فيها أكثر من مليون ونصف مليون جزائري"
answer =" 7 سنوات ونصف"
get_question(context,answer)
#output : question="كم استمرت الثورة الجزائرية؟ "
The Ara-T5 model was presented in AraT5: Text-to-Text Transformers for Arabic Language Generation by El Moatez Billah Nagoudi, AbdelRahim Elmadany, Muhammad Abdul-Mageed
Mihoubi Akram Fawzi: Linkedin | Github | [email protected]
Ibrir Adel: Linkedin | Github | [email protected]