YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
import numpy as np import hashlib import matplotlib.pyplot as plt import os from copy import deepcopy
class SymbolicMemory: def init(self): self.memory = {} self.history = []
def encode(self, grid):
flat = grid.flatten()
key = hashlib.sha256(str((grid.shape, tuple(np.bincount(flat, minlength=10)))).encode()).hexdigest()
return key
def store(self, key, value):
self.memory[key] = value
def entropy(self, grid):
flat = grid.flatten()
_, counts = np.unique(flat, return_counts=True)
probs = counts / counts.sum()
entropy = -np.sum(probs * np.log2(probs))
self.history.append(entropy)
return entropy
def plot(self, task_id):
os.makedirs("entropy_graphs", exist_ok=True)
plt.plot(self.history)
plt.title(f"ZEVE Entropy: {task_id}")
plt.xlabel("Step")
plt.ylabel("Entropy")
plt.savefig(f"entropy_graphs/entropy_{task_id}.png")
plt.clf()
class IRACOETSolver: def init(self): self.memory = SymbolicMemory()
def solve_task(self, task):
for pair in task['train']:
key = self.memory.encode(np.array(pair['input']))
self.memory.store(key, pair['output'])
results = []
for pair in task['test']:
result = self.solve(np.array(pair['input']), task.get('id', 'unknown'))
results.append(result)
return results
def solve(self, grid, task_id):
current = deepcopy(grid)
best = self.memory.entropy(current)
for _ in range(9):
options = [
np.fliplr(current), np.flipud(current),
np.rot90(current), np.roll(current, 1, 0), np.roll(current, 1, 1)
]
scored = [(g, self.memory.entropy(g)) for g in options]
candidate, score = min(scored, key=lambda x: x[1])
if score < best:
current, best = candidate, score
else:
break
self.memory.plot(task_id)
return current.tolist()
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support