Spaces:
Runtime error
Runtime error
Commit
·
3026a03
1
Parent(s):
a677593
Create utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from omegaconf import OmegaConf
|
| 3 |
+
from ldm.util import instantiate_from_config
|
| 4 |
+
from ldm.models.diffusion.ddpm import LatentDiffusion, DDIMSampler
|
| 5 |
+
import numpy as np
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
+
import json
|
| 9 |
+
|
| 10 |
+
def load_model_from_config(config_path, model_name, device='cuda'):
|
| 11 |
+
# Load the config file
|
| 12 |
+
config = OmegaConf.load(config_path)
|
| 13 |
+
|
| 14 |
+
# Instantiate the model
|
| 15 |
+
model = instantiate_from_config(config.model)
|
| 16 |
+
|
| 17 |
+
# Download the model file from Hugging Face
|
| 18 |
+
model_file = hf_hub_download(repo_id=model_name, filename="model.safetensors")
|
| 19 |
+
|
| 20 |
+
print(f"Loading model from {model_name}")
|
| 21 |
+
# Load the state dict
|
| 22 |
+
state_dict = torch.load(model_file, map_location='cpu')
|
| 23 |
+
model.load_state_dict(state_dict, strict=False)
|
| 24 |
+
|
| 25 |
+
model.to(device)
|
| 26 |
+
model.eval()
|
| 27 |
+
return model
|
| 28 |
+
|
| 29 |
+
def sample_frame(model: LatentDiffusion, prompt: str, image_sequence: torch.Tensor):
|
| 30 |
+
sampler = DDIMSampler(model)
|
| 31 |
+
|
| 32 |
+
with torch.no_grad():
|
| 33 |
+
u_dict = {'c_crossattn': "", 'c_concat': image_sequence}
|
| 34 |
+
uc = model.get_learned_conditioning(u_dict)
|
| 35 |
+
uc = model.enc_concat_seq(uc, u_dict, 'c_concat')
|
| 36 |
+
|
| 37 |
+
c_dict = {'c_crossattn': prompt, 'c_concat': image_sequence}
|
| 38 |
+
c = model.get_learned_conditioning(c_dict)
|
| 39 |
+
c = model.enc_concat_seq(c, c_dict, 'c_concat')
|
| 40 |
+
|
| 41 |
+
samples_ddim, _ = sampler.sample(S=200,
|
| 42 |
+
conditioning=c,
|
| 43 |
+
batch_size=1,
|
| 44 |
+
shape=[3, 64, 64],
|
| 45 |
+
verbose=False,
|
| 46 |
+
unconditional_guidance_scale=5.0,
|
| 47 |
+
unconditional_conditioning=uc,
|
| 48 |
+
eta=0)
|
| 49 |
+
|
| 50 |
+
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
| 51 |
+
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
| 52 |
+
|
| 53 |
+
return x_samples_ddim.squeeze(0).cpu().numpy()
|
| 54 |
+
|
| 55 |
+
# Global variables for model and device
|
| 56 |
+
model = None
|
| 57 |
+
device = None
|
| 58 |
+
|
| 59 |
+
def initialize_model(config_path, model_name):
|
| 60 |
+
global model, device
|
| 61 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 62 |
+
model = load_model_from_config(config_path, model_name, device)
|