turing-space / turing /features.py
papri-ka's picture
Deploy FastAPI ML service to Hugging Face Spaces
5fc6e5d
import ast
import hashlib
from pathlib import Path
import random
import re
from typing import List, Tuple
import nltk
from nltk.corpus import stopwords, wordnet
from nltk.stem import PorterStemmer, WordNetLemmatizer
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_selection import SelectKBest, chi2
import typer
from turing.config import (
INTERIM_DATA_DIR,
LABEL_COLUMN,
LANGS,
)
from turing.data_validation import run_custom_deepchecks, run_targeted_nlp_checks
from turing.dataset import DatasetManager
# --- NLTK Resource Check ---
REQUIRED_NLTK_PACKAGES = [
"stopwords",
"wordnet",
"omw-1.4",
"averaged_perceptron_tagger",
"punkt",
]
for package in REQUIRED_NLTK_PACKAGES:
try:
nltk.data.find(f"corpora/{package}")
except LookupError:
try:
nltk.download(package, quiet=True)
except Exception:
pass
app = typer.Typer()
# --- CONFIGURATION CLASS ---
class FeaturePipelineConfig:
"""
Configuration holder for the pipeline. Generates a unique ID based on parameters
to version the output directories.
"""
def __init__(
self,
use_stopwords: bool,
use_lemmatization: bool,
use_combo_feature: bool,
max_features: int,
min_comment_length: int,
max_comment_length: int,
enable_augmentation: bool,
custom_tags: str = "base",
):
self.use_stopwords = use_stopwords
self.use_lemmatization = use_lemmatization
self.use_combo_feature = use_combo_feature
self.max_features = max_features
self.min_comment_length = min_comment_length
self.max_comment_length = max_comment_length
self.enable_augmentation = enable_augmentation
self.custom_tags = custom_tags
self.hash_id = self._generate_readable_id()
def _generate_readable_id(self) -> str:
tags = ["clean"]
if self.enable_augmentation:
tags.append("aug-soft")
tags.append(f"k{self.max_features}")
if self.custom_tags != "base":
tags.append(self.custom_tags)
return "-".join(tags)
# --- TEXT UTILITIES ---
class TextCanonicalizer:
"""
Reduces text to a 'canonical' form (stemmed, lowercase)
to detect semantic duplicates.
preserves javadoc tags to distinguish usage (@return) from summary (Returns).
"""
def __init__(self):
self.stemmer = PorterStemmer()
self.stop_words = set(stopwords.words("english"))
# Code keywords are preserved as they carry semantic weight
self.code_keywords = {
"return",
"true",
"false",
"null",
"if",
"else",
"void",
"int",
"boolean",
"param",
"throws",
"exception",
}
def to_canonical(self, text: str) -> str:
if pd.isna(text):
return ""
text = str(text).lower()
text = re.sub(r"[^a-z0-9\s@]", " ", text)
words = text.split()
canonical_words = []
for w in words:
# If the word starts with @ (e.g., @return), keep it as is
if w.startswith("@"):
canonical_words.append(w)
continue
if w in self.stop_words and w not in self.code_keywords:
continue
stemmed = self.stemmer.stem(w)
canonical_words.append(stemmed)
return " ".join(canonical_words).strip()
class TextProcessor:
"""
Standard text cleaning logic for final feature extraction (TF-IDF).
"""
def __init__(self, config: FeaturePipelineConfig, language: str = "english"):
self.config = config
self.stop_words = set(stopwords.words(language))
self.lemmatizer = WordNetLemmatizer()
def clean_text(self, text: str) -> str:
if pd.isna(text):
return ""
text = str(text).lower()
# Remove heavy code markers but keep text structure
text = re.sub(r"(^\s*//+|^\s*/\*+|\*/$)", "", text)
# Keep only alpha characters for NLP model (plus pipe for combo)
text = re.sub(r"[^a-z\s|]", " ", text)
tokens = text.split()
if self.config.use_stopwords:
tokens = [w for w in tokens if w not in self.stop_words]
if self.config.use_lemmatization:
tokens = [self.lemmatizer.lemmatize(w) for w in tokens]
return " ".join(tokens)
# --- AUGMENTATION ---
class SafeAugmenter:
"""
protects reserved keywords from synonym replacement.
"""
def __init__(self, aug_prob=0.3):
self.aug_prob = aug_prob
self.protected_words = {
"return",
"public",
"private",
"void",
"class",
"static",
"final",
"if",
"else",
"for",
"while",
"try",
"catch",
"import",
"package",
"null",
"true",
"false",
"self",
"def",
"todo",
"fixme",
"param",
"throw",
}
def get_synonyms(self, word):
synonyms = set()
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
name = lemma.name().replace("_", " ")
if name.isalpha() and name.lower() != word.lower():
synonyms.add(name)
return list(synonyms)
def augment(self, text: str) -> str:
if pd.isna(text) or not text:
return ""
words = text.split()
if len(words) < 2:
return text
new_words = []
for word in words:
word_lower = word.lower()
if word_lower in self.protected_words:
new_words.append(word)
continue
# Random Case Injection (Noise)
if random.random() < 0.1:
if word[0].isupper():
new_words.append(word.lower())
else:
new_words.append(word.capitalize())
continue
# Synonym Replacement
if random.random() < self.aug_prob and len(word) > 3:
syns = self.get_synonyms(word_lower)
if syns:
replacement = random.choice(syns)
if word[0].isupper():
replacement = replacement.capitalize()
new_words.append(replacement)
else:
new_words.append(word)
else:
new_words.append(word)
return " ".join(new_words)
def apply_balancing(
self, df: pd.DataFrame, min_samples: int = 100
) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""
Generates synthetic data for minority classes.
Returns: (Balanced DataFrame, Report DataFrame)
"""
df["temp_label_str"] = df[LABEL_COLUMN].astype(str)
counts = df["temp_label_str"].value_counts()
print(
f"\n [Balance Check - PRE] Min class size: {counts.min()} | Max: {counts.max()}"
)
existing_sentences = set(df["comment_sentence"].str.strip())
new_rows = []
report_rows = []
for label_str, count in counts.items():
if count < min_samples:
needed = min_samples - count
class_subset = df[df["temp_label_str"] == label_str]
if class_subset.empty:
continue
samples = class_subset["comment_sentence"].tolist()
orig_label = class_subset[LABEL_COLUMN].iloc[0]
# Propagate 'combo' if present
orig_combo = None
if "combo" in class_subset.columns:
orig_combo = class_subset["combo"].iloc[0]
generated = 0
attempts = 0
# Cap attempts to avoid infinite loops if vocabulary is too small
while generated < needed and attempts < needed * 5:
attempts += 1
src = random.choice(samples)
aug_txt = self.augment(src).strip()
# Ensure Global Uniqueness
if aug_txt and aug_txt not in existing_sentences:
row = {
"comment_sentence": aug_txt,
LABEL_COLUMN: orig_label,
"partition": "train_aug",
"index": -1, # Placeholder
}
if orig_combo:
row["combo"] = orig_combo
new_rows.append(row)
report_rows.append(
{
"original_text": src,
"augmented_text": aug_txt,
"label": label_str,
"reason": f"Class has {count} samples (Target {min_samples})",
}
)
existing_sentences.add(aug_txt)
generated += 1
df = df.drop(columns=["temp_label_str"])
df_report = pd.DataFrame(report_rows)
if new_rows:
augmented_df = pd.concat([df, pd.DataFrame(new_rows)], ignore_index=True)
augmented_df["index"] = range(len(augmented_df))
temp_counts = augmented_df[LABEL_COLUMN].astype(str).value_counts()
print(
f" [Balance Check - POST] Min class size: {temp_counts.min()} | Max: {temp_counts.max()}"
)
return augmented_df, df_report
return df, df_report
# --- CLEANING LOGIC ---
def clean_training_data_smart(
df: pd.DataFrame, min_len: int, max_len: int, language: str = "english"
) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""
Performs 'Smart Cleaning' on the Training Set with language-specific heuristics.
"""
canon = TextCanonicalizer()
dropped_rows = []
print(f" [Clean] Computing heuristics (Language: {language})...")
df["canon_key"] = df["comment_sentence"].apply(canon.to_canonical)
# 1. Token Length Filter
def count_code_tokens(text):
return len([t for t in re.split(r"[^a-zA-Z0-9]+", str(text)) if t])
df["temp_token_len"] = df["comment_sentence"].apply(count_code_tokens)
MIN_ALPHA_CHARS = 6
MAX_SYMBOL_RATIO = 0.50
# 2. Heuristic Filters (Tiny/Huge/Code)
def get_heuristics(text):
s = str(text).strip()
char_len = len(s)
if char_len == 0:
return False, False, 1.0
alpha_len = sum(1 for c in s if c.isalpha())
non_alnum_chars = sum(1 for c in s if not c.isalnum() and not c.isspace())
symbol_ratio = non_alnum_chars / char_len if char_len > 0 else 0
is_tiny = alpha_len < MIN_ALPHA_CHARS
is_huge = char_len > 800
is_code = symbol_ratio > MAX_SYMBOL_RATIO
return is_tiny, is_huge, is_code
heuristics = df["comment_sentence"].apply(get_heuristics)
df["is_tiny"] = [x[0] for x in heuristics]
df["is_huge"] = [x[1] for x in heuristics]
df["symbol_ratio"] = [x[2] for x in heuristics]
df["is_code"] = df["symbol_ratio"] > 0.50
mask_keep = (
(df["temp_token_len"] >= min_len)
& (df["temp_token_len"] <= max_len)
& (~df["is_tiny"])
& (~df["is_huge"])
& (~df["is_code"])
)
df_dropped_qual = df[~mask_keep].copy()
if not df_dropped_qual.empty:
def reason(row):
if row["is_tiny"]:
return f"Too Tiny (<{MIN_ALPHA_CHARS} alpha)"
if row["is_huge"]:
return "Too Huge (>800 chars)"
if row["is_code"]:
return f"Pure Code (>{int(MAX_SYMBOL_RATIO*100)}% symbols)"
return f"Token Count ({row['temp_token_len']})"
df_dropped_qual["drop_reason"] = df_dropped_qual.apply(reason, axis=1)
dropped_rows.append(df_dropped_qual)
df = df[mask_keep].copy()
# 3. Semantic Conflicts (Ambiguity)
df["label_s"] = df[LABEL_COLUMN].astype(str)
conflict_counts = df.groupby("canon_key")["label_s"].nunique()
conflicting_keys = conflict_counts[conflict_counts > 1].index
mask_conflicts = df["canon_key"].isin(conflicting_keys)
df_dropped_conflicts = df[mask_conflicts].copy()
if not df_dropped_conflicts.empty:
df_dropped_conflicts["drop_reason"] = "Semantic Conflict"
dropped_rows.append(df_dropped_conflicts)
df = df[~mask_conflicts].copy()
# 4. Exact Duplicates
mask_dupes = df.duplicated(subset=["comment_sentence"], keep="first")
df_dropped_dupes = df[mask_dupes].copy()
if not df_dropped_dupes.empty:
df_dropped_dupes["drop_reason"] = "Exact Duplicate"
dropped_rows.append(df_dropped_dupes)
df = df[~mask_dupes].copy()
# Cleanup columns
cols_to_drop = [
"canon_key",
"label_s",
"temp_token_len",
"is_tiny",
"is_huge",
"is_code",
"symbol_ratio"
]
df = df.drop(columns=cols_to_drop, errors="ignore")
if dropped_rows:
df_report = pd.concat(dropped_rows, ignore_index=True)
cols_rep = ["index", "comment_sentence", LABEL_COLUMN, "drop_reason"]
final_cols = [c for c in cols_rep if c in df_report.columns]
df_report = df_report[final_cols]
else:
df_report = pd.DataFrame(columns=["index", "comment_sentence", "drop_reason"])
print(f" [Clean] Removed {len(df_report)} rows. Final: {len(df)}.")
return df, df_report
# --- FEATURE ENGINEERING ---
class FeatureEngineer:
def __init__(self, config: FeaturePipelineConfig):
self.config = config
self.processor = TextProcessor(config=config)
self.tfidf_vectorizer = TfidfVectorizer(max_features=config.max_features)
def extract_features_for_check(self, df: pd.DataFrame) -> pd.DataFrame:
"""Extracts metadata features for analysis."""
def analyze(text):
s = str(text)
words = s.split()
n_words = len(words)
if n_words == 0:
return 0, 0, 0
first_word = words[0].lower()
starts_verb = (
1
if first_word.endswith("s")
or first_word.startswith("get")
or first_word.startswith("set")
else 0
)
return (len(s), n_words, starts_verb)
metrics = df["comment_sentence"].apply(analyze)
df["f_length"] = [x[0] for x in metrics]
df["f_word_count"] = [x[1] for x in metrics]
df["f_starts_verb"] = [x[2] for x in metrics]
# Calculate MD5 hash for efficient exact duplicate detection in Deepchecks
df["text_hash"] = df["comment_sentence"].apply(
lambda x: hashlib.md5(str(x).encode()).hexdigest()
)
return df
def vectorize_and_select(self, df_train, df_test):
def clean_fn(x):
return re.sub(r"[^a-zA-Z\s]", "", str(x).lower())
X_train = self.tfidf_vectorizer.fit_transform(
df_train["comment_sentence"].apply(clean_fn)
)
y_train = np.stack(df_train[LABEL_COLUMN].values)
# Handling multi-label for Chi2 (using sum or max)
y_train_sum = (
y_train.sum(axis=1) if len(y_train.shape) > 1 else y_train
)
selector = SelectKBest(
chi2, k=min(self.config.max_features, X_train.shape[1])
)
X_train = selector.fit_transform(X_train, y_train_sum)
X_test = self.tfidf_vectorizer.transform(
df_test["comment_sentence"].apply(clean_fn)
)
X_test = selector.transform(X_test)
vocab = [
self.tfidf_vectorizer.get_feature_names_out()[i]
for i in selector.get_support(indices=True)
]
return X_train, X_test, vocab
# --- MAIN EXECUTION ---
def main(
feature_dir: Path = typer.Option(
INTERIM_DATA_DIR / "features", help="Output dir."
),
reports_root: Path = typer.Option(
Path("reports/data"), help="Reports root."
),
max_features: int = typer.Option(5000),
min_comment_length: int = typer.Option(
2, help="Remove comments shorter than chars."
),
max_comment_length: int = typer.Option(300),
augment: bool = typer.Option(False, "--augment", help="Enable augmentation."),
balance_threshold: int = typer.Option(100, help="Min samples per class."),
run_vectorization: bool = typer.Option(False, "--run-vectorization"),
run_nlp_check: bool = typer.Option(
True, "--run-nlp", help="Run Deepchecks NLP suite."
),
custom_tags: str = typer.Option("base", help="Custom tags."),
save_full_csv: bool = typer.Option(False, "--save-full-csv"),
languages: List[str] = typer.Option(LANGS, show_default=False),
):
config = FeaturePipelineConfig(
True,
True,
True,
max_features,
min_comment_length,
max_comment_length,
augment,
custom_tags,
)
print(f"=== Pipeline ID: {config.hash_id} ===")
dm = DatasetManager()
full_dataset = dm.get_dataset()
fe = FeatureEngineer(config)
augmenter = SafeAugmenter()
feat_output_dir = feature_dir / config.hash_id
feat_output_dir.mkdir(parents=True, exist_ok=True)
report_output_dir = reports_root / config.hash_id
for lang in languages:
print(f"\n{'='*30}\nPROCESSING LANGUAGE: {lang.upper()}\n{'='*30}")
df_train = full_dataset[f"{lang}_train"].to_pandas()
df_test = full_dataset[f"{lang}_test"].to_pandas()
# Standardize Label Format
for df in [df_train, df_test]:
if isinstance(df[LABEL_COLUMN].iloc[0], str):
df[LABEL_COLUMN] = (
df[LABEL_COLUMN]
.str.replace(r"\s+", ", ", regex=True)
.apply(ast.literal_eval)
)
lang_report_dir = report_output_dir / lang
# 1. RAW AUDIT
print(" >>> Phase 1: Auditing RAW Data")
df_train_raw = fe.extract_features_for_check(df_train.copy())
df_test_raw = fe.extract_features_for_check(df_test.copy())
run_custom_deepchecks(
df_train_raw, df_test_raw, lang_report_dir, "raw", lang
)
if run_nlp_check:
run_targeted_nlp_checks(
df_train_raw, df_test_raw, lang_report_dir, "raw"
)
# 2. CLEANING & AUGMENTATION
print("\n >>> Phase 2: Smart Cleaning & Augmentation")
df_train, df_dropped = clean_training_data_smart(
df_train, min_comment_length, max_comment_length, language=lang
)
if not df_dropped.empty:
dropped_path = lang_report_dir / "dropped_rows.csv"
df_dropped.to_csv(dropped_path, index=False)
print(f" [Report] Dropped rows details saved to: {dropped_path}")
if augment:
print(" [Augment] Applying Soft Balancing...")
df_train, df_aug_report = augmenter.apply_balancing(
df_train, min_samples=balance_threshold
)
if not df_aug_report.empty:
aug_path = lang_report_dir / "augmentation_report.csv"
df_aug_report.to_csv(aug_path, index=False)
print(
f" [Report] Augmentation details saved to: {aug_path}"
)
# 3. PROCESSED AUDIT
print("\n >>> Phase 3: Auditing PROCESSED Data")
df_train = fe.extract_features_for_check(df_train)
df_test = fe.extract_features_for_check(df_test)
run_custom_deepchecks(
df_train, df_test, lang_report_dir, "processed", lang
)
if run_nlp_check:
run_targeted_nlp_checks(
df_train, df_test, lang_report_dir, "processed"
)
# 4. FINAL PROCESSING & SAVING
print("\n >>> Phase 4: Final Processing & Save")
df_train["comment_clean"] = df_train["comment_sentence"].apply(
fe.processor.clean_text
)
df_test["comment_clean"] = df_test["comment_sentence"].apply(
fe.processor.clean_text
)
if config.use_combo_feature:
if "combo" in df_train.columns:
df_train["combo_clean"] = df_train["combo"].apply(
fe.processor.clean_text
)
if "combo" in df_test.columns:
df_test["combo_clean"] = df_test["combo"].apply(
fe.processor.clean_text
)
X_train, X_test, vocab = None, None, []
if run_vectorization:
print(" [Vectorization] TF-IDF & Chi2...")
X_train, X_test, vocab = fe.vectorize_and_select(df_train, df_test)
def format_label_robust(lbl):
if hasattr(lbl, "tolist"): # Check if numpy array
lbl = lbl.tolist()
return str(lbl)
df_train[LABEL_COLUMN] = df_train[LABEL_COLUMN].apply(format_label_robust)
df_test[LABEL_COLUMN] = df_test[LABEL_COLUMN].apply(format_label_robust)
cols_to_save = [
"index",
LABEL_COLUMN,
"comment_sentence",
"comment_clean",
]
if "combo" in df_train.columns:
cols_to_save.append("combo")
if "combo_clean" in df_train.columns:
cols_to_save.append("combo_clean")
meta_cols = [c for c in df_train.columns if c.startswith("f_")]
cols_to_save.extend(meta_cols)
print(f" [Save] Columns: {cols_to_save}")
df_train[cols_to_save].to_csv(
feat_output_dir / f"{lang}_train.csv", index=False
)
df_test[cols_to_save].to_csv(
feat_output_dir / f"{lang}_test.csv", index=False
)
if run_vectorization and X_train is not None:
from scipy.sparse import save_npz
save_npz(feat_output_dir / f"{lang}_train_tfidf.npz", X_train)
save_npz(feat_output_dir / f"{lang}_test_tfidf.npz", X_test)
with open(
feat_output_dir / f"{lang}_vocab.txt", "w", encoding="utf-8"
) as f:
f.write("\n".join(vocab))
print(f"\nAll Done. Reports in: {report_output_dir}")
if __name__ == "__main__":
typer.run(main)