import os from flask import Flask, request, jsonify from flask_cors import CORS from transformers import pipeline from PIL import Image import io app = Flask(__name__) CORS(app) # Load the model pipeline # We use the "image-classification" pipeline with the specified model try: print("Loading model...") pipe = pipeline("image-classification", model="Ateeqq/ai-vs-human-image-detector") print("Model loaded successfully!") except Exception as e: print(f"Error loading model: {e}") pipe = None @app.route('/') def home(): return "AI Image Detector Backend is Running!" @app.route('/predict', methods=['POST']) def predict(): if not pipe: return jsonify({"error": "Model not loaded"}), 500 if 'image' not in request.files: return jsonify({"error": "No image provided"}), 400 file = request.files['image'] if file.filename == '': return jsonify({"error": "No image selected"}), 400 try: # Read image image_bytes = file.read() image = Image.open(io.BytesIO(image_bytes)) # Run prediction result = pipe(image) # Result is a list of dicts, e.g., [{'label': 'REAL', 'score': 0.98}, ...] # We want to return the most likely label and its score top_result = max(result, key=lambda x: x['score']) return jsonify(top_result) except Exception as e: return jsonify({"error": str(e)}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=7860)