PEFT-method-comparison / MetaMathQA /results /miss--llama-3.2-3B-bat.json
github-actions[bot]
🚀 Deploy method comparison app from GH action
bf3e097
{
"run_info": {
"created_at": "2025-08-14T11:55:49+00:00",
"total_time": 2808.721444314,
"experiment_name": "miss/llama-3.2-3B-bat",
"peft_branch": "main",
"train_config": {
"model_id": "meta-llama/Llama-3.2-3B",
"dtype": "bfloat16",
"max_seq_length": 768,
"batch_size": 4,
"batch_size_eval": 50,
"max_steps": 5000,
"eval_steps": 250,
"compile": false,
"query_template": "Question: {query} Think step by step.\nAnswer:",
"seed": 0,
"grad_norm_clip": 1.0,
"optimizer_type": "AdamW",
"optimizer_kwargs": {
"lr": 0.0001,
"weight_decay": 0.1
},
"lr_scheduler": "cosine",
"use_amp": false,
"autocast_adapter_dtype": true,
"generation_kwargs": {
"max_length": 800,
"max_new_tokens": 300
},
"attn_implementation": null
},
"peft_config": {
"task_type": null,
"peft_type": "MISS",
"auto_mapping": null,
"base_model_name_or_path": "meta-llama/Llama-3.2-3B",
"revision": null,
"inference_mode": false,
"r": 64,
"miss_dropout": 0.0,
"mini_r": 1,
"target_modules": [
"v_proj",
"q_proj"
],
"exclude_modules": null,
"init_weights": "bat",
"layers_to_transform": null,
"layers_pattern": null,
"bias": "none",
"modules_to_save": null
},
"error_msg": ""
},
"train_info": {
"accelerator_memory_reserved_avg": 14713719934,
"accelerator_memory_max": 25251807232,
"accelerator_memory_reserved_99th": 20472733368,
"train_time": 2466.149786608999,
"file_size": 29367552,
"num_trainable_params": 7340032,
"num_total_params": 3220089856,
"status": "success",
"metrics": [
{
"step": 250,
"valid accuracy": 0.32,
"train loss": 0.8741402707099915,
"train samples": 1000,
"train time": 44.507981576001725,
"eval time": 16.603345405999903,
"tokens / sec": 4756.8771376088835,
"mem allocated avg": 6898417197.056,
"mem reserved avg": 14772422574.08,
"elapsed time": 128.87205576299993
},
{
"step": 500,
"valid accuracy": 0.42,
"train loss": 0.6949697629213333,
"train samples": 2000,
"train time": 43.6579733309992,
"eval time": 12.170993550999924,
"tokens / sec": 4764.192749467687,
"mem allocated avg": 6890132037.632,
"mem reserved avg": 14662515032.064,
"elapsed time": 244.05737383899998
},
{
"step": 750,
"valid accuracy": 0.38,
"train loss": 0.667268633723259,
"train samples": 3000,
"train time": 44.76929137299828,
"eval time": 8.243386759000032,
"tokens / sec": 4789.0192903368525,
"mem allocated avg": 6900972326.912,
"mem reserved avg": 14823525974.016,
"elapsed time": 357.2643382499999
},
{
"step": 1000,
"valid accuracy": 0.48,
"train loss": 0.6478440872430802,
"train samples": 4000,
"train time": 43.91589877199954,
"eval time": 9.950706549000074,
"tokens / sec": 4743.976687842116,
"mem allocated avg": 6892131758.08,
"mem reserved avg": 14678444998.656,
"elapsed time": 470.61746281599994
},
{
"step": 1250,
"valid accuracy": 0.4,
"train loss": 0.6435494017601013,
"train samples": 5000,
"train time": 44.14956537599949,
"eval time": 16.547810228000117,
"tokens / sec": 4723.444007296278,
"mem allocated avg": 6892566360.064,
"mem reserved avg": 14674737233.92,
"elapsed time": 591.057877963
},
{
"step": 1500,
"valid accuracy": 0.44,
"train loss": 0.6368351166248322,
"train samples": 6000,
"train time": 44.08414804900008,
"eval time": 16.39257521799982,
"tokens / sec": 4748.441543371237,
"mem allocated avg": 6893236697.088,
"mem reserved avg": 14706580389.888,
"elapsed time": 711.4482007859999
},
{
"step": 1750,
"valid accuracy": 0.48,
"train loss": 0.6278127529621125,
"train samples": 7000,
"train time": 44.35628801999951,
"eval time": 16.51757288099998,
"tokens / sec": 4719.849413584954,
"mem allocated avg": 6894834587.648,
"mem reserved avg": 14716881600.512,
"elapsed time": 832.303061434
},
{
"step": 2000,
"valid accuracy": 0.44,
"train loss": 0.6281237225532532,
"train samples": 8000,
"train time": 43.95804043099747,
"eval time": 16.465996583000106,
"tokens / sec": 4724.869397352412,
"mem allocated avg": 6891602710.528,
"mem reserved avg": 14655669927.936,
"elapsed time": 952.480474365
},
{
"step": 2250,
"valid accuracy": 0.42,
"train loss": 0.6159191156625747,
"train samples": 9000,
"train time": 44.99231110500091,
"eval time": 16.5404373570002,
"tokens / sec": 4777.4385160692145,
"mem allocated avg": 6903352731.648,
"mem reserved avg": 14850520514.56,
"elapsed time": 1074.326083797
},
{
"step": 2500,
"valid accuracy": 0.44,
"train loss": 0.6119081476926803,
"train samples": 10000,
"train time": 43.74939265700118,
"eval time": 16.33099729599985,
"tokens / sec": 4707.882498273705,
"mem allocated avg": 6887975004.16,
"mem reserved avg": 14597494931.456,
"elapsed time": 1194.094911997
},
{
"step": 2750,
"valid accuracy": 0.44,
"train loss": 0.6010881408452987,
"train samples": 11000,
"train time": 43.686495668999896,
"eval time": 11.229614545000004,
"tokens / sec": 4850.0342441142875,
"mem allocated avg": 6899207546.88,
"mem reserved avg": 14785391362.048,
"elapsed time": 1308.783695182
},
{
"step": 3000,
"valid accuracy": 0.5,
"train loss": 0.5899516706466674,
"train samples": 12000,
"train time": 43.49030302700089,
"eval time": 16.45857661900004,
"tokens / sec": 4799.483688821613,
"mem allocated avg": 6894123913.216,
"mem reserved avg": 14693427052.544,
"elapsed time": 1428.4006117669999
},
{
"step": 3250,
"valid accuracy": 0.52,
"train loss": 0.5989595657587051,
"train samples": 13000,
"train time": 44.46332806799887,
"eval time": 16.496417500999996,
"tokens / sec": 4743.257177633304,
"mem allocated avg": 6895596777.472,
"mem reserved avg": 14723995140.096,
"elapsed time": 1549.445265484
},
{
"step": 3500,
"valid accuracy": 0.46,
"train loss": 0.579978278040886,
"train samples": 14000,
"train time": 43.63575344299579,
"eval time": 10.30441635599982,
"tokens / sec": 4806.838050224342,
"mem allocated avg": 6893774680.064,
"mem reserved avg": 14699450073.088,
"elapsed time": 1663.316950223
},
{
"step": 3750,
"valid accuracy": 0.44,
"train loss": 0.5772325273752212,
"train samples": 15000,
"train time": 45.25726027099972,
"eval time": 16.524598716000128,
"tokens / sec": 4788.2483098266675,
"mem allocated avg": 6905177583.616,
"mem reserved avg": 14889795977.216,
"elapsed time": 1785.1977310290001
},
{
"step": 4000,
"valid accuracy": 0.4,
"train loss": 0.5859311088323593,
"train samples": 16000,
"train time": 43.383903580999686,
"eval time": 16.386461492000308,
"tokens / sec": 4710.802466597467,
"mem allocated avg": 6886734053.376,
"mem reserved avg": 14584660361.216,
"elapsed time": 1904.6209389110002
},
{
"step": 4250,
"valid accuracy": 0.5,
"train loss": 0.5724418247938157,
"train samples": 17000,
"train time": 44.42285394400233,
"eval time": 9.048803244000283,
"tokens / sec": 4758.564145078759,
"mem allocated avg": 6896789555.2,
"mem reserved avg": 14740688470.016,
"elapsed time": 2018.321323589
},
{
"step": 4500,
"valid accuracy": 0.46,
"train loss": 0.5792494393587112,
"train samples": 18000,
"train time": 43.636566284001674,
"eval time": 16.3964514889999,
"tokens / sec": 4762.4737163655245,
"mem allocated avg": 6892818855.936,
"mem reserved avg": 14655921586.176,
"elapsed time": 2137.859151554
},
{
"step": 4750,
"valid accuracy": 0.46,
"train loss": 0.5680228790044785,
"train samples": 19000,
"train time": 43.96985955700529,
"eval time": 16.500367100000403,
"tokens / sec": 4774.61156608476,
"mem allocated avg": 6894185185.28,
"mem reserved avg": 14706722996.224,
"elapsed time": 2258.0618387639997
},
{
"step": 5000,
"valid accuracy": 0.44,
"train loss": 0.5760680929422378,
"train samples": 20000,
"train time": 43.83249596400128,
"eval time": 16.474086973999874,
"tokens / sec": 4751.7257555001215,
"mem allocated avg": 6891346642.944,
"mem reserved avg": 14655552487.424,
"elapsed time": 2377.7959423069997
},
{
"step": 5000,
"test accuracy": 0.5049279757391963,
"train loss": 0.5760680929422378,
"train samples": 20000,
"train total tokens": 4198051
}
]
},
"meta_info": {
"model_info": {
"sha": "13afe5124825b4f3751f836b40dafda64c1ed062",
"created_at": "2024-09-18T15:23:48+00:00"
},
"dataset_info": {
"metamath": {
"sha": "aa4f34d3d2d3231299b5b03d9b3e5a20da45aa18",
"created_at": "2023-09-21T17:22:46+00:00"
},
"gsm8k": {
"sha": "e53f048856ff4f594e959d75785d2c2d37b678ee",
"created_at": "2022-04-12T10:22:10+00:00"
}
},
"package_info": {
"transformers-version": "4.52.4",
"transformers-commit-hash": null,
"peft-version": "0.17.1.dev0",
"peft-commit-hash": "47961bb54706e45fd3b5460baa4921a48bcdce35",
"datasets-version": "3.6.0",
"datasets-commit-hash": null,
"bitsandbytes-version": "0.46.0",
"bitsandbytes-commit-hash": null,
"torch-version": "2.7.1+cu126",
"torch-commit-hash": null
},
"system_info": {
"system": "Linux",
"release": "6.14.0-1010-aws",
"version": "#10~24.04.1-Ubuntu SMP Fri Jul 18 20:44:30 UTC 2025",
"machine": "x86_64",
"processor": "x86_64",
"accelerator": "NVIDIA L40S"
},
"pytorch_info": "PyTorch built with:\n - GCC 11.2\n - C++ Version: 201703\n - Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v3.7.1 (Git Hash 8d263e693366ef8db40acc569cc7d8edf644556d)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 12.6\n - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90\n - CuDNN 90.7.1 (built against CUDA 12.8)\n - Built with CuDNN 90.5.1\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, COMMIT_SHA=e2d141dbde55c2a4370fac5165b0561b6af4798b, CUDA_VERSION=12.6, CUDNN_VERSION=9.5.1, CXX_COMPILER=/opt/rh/gcc-toolset-11/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=range-loop-construct -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.7.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, \n"
}
}