Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,13 +7,13 @@ import os
|
|
| 7 |
from fastapi import FastAPI
|
| 8 |
from pydantic import BaseModel
|
| 9 |
import uvicorn
|
| 10 |
-
import openai
|
| 11 |
|
| 12 |
# --- Configuration ---
|
| 13 |
BASE_MODEL_ID = "meta-llama/Llama-3.1-8B-Instruct"
|
| 14 |
LORA_MODEL_ID = "LlamaFactoryAI/Llama-3.1-8B-Instruct-cv-job-description-matching"
|
| 15 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 16 |
-
#
|
| 17 |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
| 18 |
|
| 19 |
# --- FastAPI App ---
|
|
@@ -75,6 +75,45 @@ def load_model():
|
|
| 75 |
print("OPENAI_API_KEY not found. Skipping human-readable summary generation.")
|
| 76 |
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
def get_human_readable_summary(json_data: dict) -> str:
|
| 79 |
"""Uses OpenAI to convert structured JSON data into human-readable text."""
|
| 80 |
if not openai_client:
|
|
@@ -84,10 +123,8 @@ def get_human_readable_summary(json_data: dict) -> str:
|
|
| 84 |
prompt = f"""
|
| 85 |
You are an expert technical writer. Take the following structured JSON data
|
| 86 |
representing a CV-Job Description match analysis and convert it into a smooth,
|
| 87 |
-
professional, human-readable summary.
|
| 88 |
-
|
| 89 |
-
- analyse fit with strenght and weakness
|
| 90 |
-
- recommendation for overal fit and what they should do
|
| 91 |
steps clearly at the end. Do not output any JSON or code formatting.
|
| 92 |
|
| 93 |
JSON Data:
|
|
@@ -121,18 +158,23 @@ def match_cv_jd(cv_text: str, job_description: str) -> dict:
|
|
| 121 |
# Ensure model is loaded (important for environments where Gradio might reload)
|
| 122 |
if model is None or tokenizer is None:
|
| 123 |
load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
# System prompt guides the model's behavior and output format (JSON structure)
|
| 126 |
system_prompt = """You are a world-class CV and Job Description matching AI. Output a structured JSON with fields:- matching_analysis- description- score (0-100)- recommendation (2 concrete steps)Output MUST be valid JSON and contain ONLY the JSON object, nothing else."""
|
| 127 |
|
| 128 |
-
# User prompt
|
| 129 |
-
user_prompt = f"""CV:
|
| 130 |
---
|
| 131 |
-
{
|
| 132 |
---
|
| 133 |
-
Job Description:
|
| 134 |
---
|
| 135 |
-
{
|
| 136 |
---"""
|
| 137 |
|
| 138 |
messages = [
|
|
@@ -172,7 +214,7 @@ Job Description:
|
|
| 172 |
|
| 173 |
parsed = json.loads(json_str)
|
| 174 |
|
| 175 |
-
#
|
| 176 |
if OPENAI_API_KEY and openai_client:
|
| 177 |
human_readable_text = get_human_readable_summary(parsed)
|
| 178 |
# Add the summary to the JSON output
|
|
|
|
| 7 |
from fastapi import FastAPI
|
| 8 |
from pydantic import BaseModel
|
| 9 |
import uvicorn
|
| 10 |
+
import openai
|
| 11 |
|
| 12 |
# --- Configuration ---
|
| 13 |
BASE_MODEL_ID = "meta-llama/Llama-3.1-8B-Instruct"
|
| 14 |
LORA_MODEL_ID = "LlamaFactoryAI/Llama-3.1-8B-Instruct-cv-job-description-matching"
|
| 15 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
| 16 |
+
# Check for OpenAI API key
|
| 17 |
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
| 18 |
|
| 19 |
# --- FastAPI App ---
|
|
|
|
| 75 |
print("OPENAI_API_KEY not found. Skipping human-readable summary generation.")
|
| 76 |
|
| 77 |
|
| 78 |
+
# --- NEW: Function to summarize input text (CV or JD) ---
|
| 79 |
+
def get_summary(text: str, role: str) -> str:
|
| 80 |
+
"""Uses OpenAI to create a concise summary of the CV or Job Description."""
|
| 81 |
+
if not openai_client:
|
| 82 |
+
# Fallback: return original text if API is not available
|
| 83 |
+
return text
|
| 84 |
+
|
| 85 |
+
if role == 'CV':
|
| 86 |
+
prompt_instruction = "Extract the key professional skills, technologies, job roles, and quantifiable achievements. Exclude personal contact information, filler text, or overly verbose descriptions. Keep the summary under 300 words."
|
| 87 |
+
elif role == 'JD':
|
| 88 |
+
prompt_instruction = "Extract the core required skills, experience levels, technological stack, and main responsibilities for this role. Exclude recruiting boilerplate or company mission statements. Keep the summary under 200 words."
|
| 89 |
+
else:
|
| 90 |
+
prompt_instruction = "Summarize the key contents."
|
| 91 |
+
|
| 92 |
+
prompt = f"""
|
| 93 |
+
{prompt_instruction}
|
| 94 |
+
|
| 95 |
+
Original Text:
|
| 96 |
+
---
|
| 97 |
+
{text}
|
| 98 |
+
---
|
| 99 |
+
|
| 100 |
+
Concise Summary:
|
| 101 |
+
"""
|
| 102 |
+
|
| 103 |
+
try:
|
| 104 |
+
completion = openai_client.chat.completions.create(
|
| 105 |
+
model="gpt-4o-mini",
|
| 106 |
+
messages=[
|
| 107 |
+
{"role": "user", "content": prompt}
|
| 108 |
+
],
|
| 109 |
+
temperature=0.1, # Very low temp for fact extraction
|
| 110 |
+
)
|
| 111 |
+
return completion.choices[0].message.content.strip()
|
| 112 |
+
except Exception as e:
|
| 113 |
+
print(f"OpenAI summarization for {role} failed: {e}. Using original text.")
|
| 114 |
+
return text
|
| 115 |
+
|
| 116 |
+
|
| 117 |
def get_human_readable_summary(json_data: dict) -> str:
|
| 118 |
"""Uses OpenAI to convert structured JSON data into human-readable text."""
|
| 119 |
if not openai_client:
|
|
|
|
| 123 |
prompt = f"""
|
| 124 |
You are an expert technical writer. Take the following structured JSON data
|
| 125 |
representing a CV-Job Description match analysis and convert it into a smooth,
|
| 126 |
+
professional, human-readable summary. Focus on the score, key findings in
|
| 127 |
+
'matching_analysis' and 'description', and format the 'recommendation'
|
|
|
|
|
|
|
| 128 |
steps clearly at the end. Do not output any JSON or code formatting.
|
| 129 |
|
| 130 |
JSON Data:
|
|
|
|
| 158 |
# Ensure model is loaded (important for environments where Gradio might reload)
|
| 159 |
if model is None or tokenizer is None:
|
| 160 |
load_model()
|
| 161 |
+
|
| 162 |
+
# --- NEW: Summarization Step ---
|
| 163 |
+
print("Summarizing CV and Job Description...")
|
| 164 |
+
summarized_cv = get_summary(cv_text, 'CV')
|
| 165 |
+
summarized_jd = get_summary(job_description, 'JD')
|
| 166 |
|
| 167 |
# System prompt guides the model's behavior and output format (JSON structure)
|
| 168 |
system_prompt = """You are a world-class CV and Job Description matching AI. Output a structured JSON with fields:- matching_analysis- description- score (0-100)- recommendation (2 concrete steps)Output MUST be valid JSON and contain ONLY the JSON object, nothing else."""
|
| 169 |
|
| 170 |
+
# User prompt now uses the summarized text
|
| 171 |
+
user_prompt = f"""CV (Summarized):
|
| 172 |
---
|
| 173 |
+
{summarized_cv}
|
| 174 |
---
|
| 175 |
+
Job Description (Summarized):
|
| 176 |
---
|
| 177 |
+
{summarized_jd}
|
| 178 |
---"""
|
| 179 |
|
| 180 |
messages = [
|
|
|
|
| 214 |
|
| 215 |
parsed = json.loads(json_str)
|
| 216 |
|
| 217 |
+
# Post-process with OpenAI to add human_readable summary
|
| 218 |
if OPENAI_API_KEY and openai_client:
|
| 219 |
human_readable_text = get_human_readable_summary(parsed)
|
| 220 |
# Add the summary to the JSON output
|