Spaces:
Sleeping
Sleeping
File size: 8,592 Bytes
31c9c97 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 a24dd2a e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 e98c8f9 cf392d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import gradio as gr
import torch
import json
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig
import os
from fastapi import FastAPI
from pydantic import BaseModel
import uvicorn
import openai # Import the OpenAI library
# --- Configuration ---
BASE_MODEL_ID = "meta-llama/Llama-3.1-8B-Instruct"
LORA_MODEL_ID = "LlamaFactoryAI/Llama-3.1-8B-Instruct-cv-job-description-matching"
HF_TOKEN = os.environ.get("HF_TOKEN")
# NEW: Check for OpenAI API key
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
# --- FastAPI App ---
app = FastAPI()
# --- Pydantic Model for API ---
class MatchRequest(BaseModel):
cv_text: str
job_description: str
# --- Model and Tokenizer ---
model = None
tokenizer = None
openai_client = None
def load_model():
global model, tokenizer, openai_client
if model is not None:
return
print("Loading base model...")
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL_ID,
torch_dtype=torch.bfloat16,
device_map="auto",
token=HF_TOKEN
)
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, token=HF_TOKEN)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("Loading LoRA adapter...")
peft_config = PeftConfig.from_pretrained(
LORA_MODEL_ID,
task_type="CAUSAL_LM",
token=HF_TOKEN
)
model_with_lora = PeftModel.from_pretrained(
base_model,
LORA_MODEL_ID,
config=peft_config,
token=HF_TOKEN
)
# Merge the LoRA adapter into the base model for a single, faster inference model
model = model_with_lora.merge_and_unload()
model.eval()
print("Model fully loaded!")
# Initialize OpenAI client if key is available
if OPENAI_API_KEY:
openai_client = openai.OpenAI(api_key=OPENAI_API_KEY)
print("OpenAI client initialized.")
else:
print("OPENAI_API_KEY not found. Skipping human-readable summary generation.")
def get_human_readable_summary(json_data: dict) -> str:
"""Uses OpenAI to convert structured JSON data into human-readable text."""
if not openai_client:
return "OpenAI API not available. Set OPENAI_API_KEY to enable summarization."
# Defining a prompt to achieve the conversion to human-readable text
prompt = f"""
You are an expert technical writer. Take the following structured JSON data
representing a CV-Job Description match analysis and convert it into a smooth,
professional, human-readable summary. Do not mention score, focus on the followings:
- key findings, in 'matching_analysis'
- analyse fit with strenght and weakness
- recommendation for overal fit and what they should do
steps clearly at the end. Do not output any JSON or code formatting.
JSON Data:
---
{json.dumps(json_data, indent=2)}
---
Human-Readable Summary:
"""
try:
completion = openai_client.chat.completions.create(
model="gpt-4o-mini", # A fast and capable model for this task
messages=[
{"role": "user", "content": prompt}
],
temperature=0.2, # Low temperature for reliable summarization
)
return completion.choices[0].message.content.strip()
except Exception as e:
print(f"OpenAI API call failed: {e}")
return f"OpenAI summarization failed due to an API error: {e}"
# --- Core Inference ---
def match_cv_jd(cv_text: str, job_description: str) -> dict:
"""
Performs the CV-JD matching using the merged Llama 3.1 model and post-processes
the result using OpenAI if available.
"""
# Ensure model is loaded (important for environments where Gradio might reload)
if model is None or tokenizer is None:
load_model()
# System prompt guides the model's behavior and output format (JSON structure)
system_prompt = """You are a world-class CV and Job Description matching AI. Output a structured JSON with fields:- matching_analysis- description- score (0-100)- recommendation (2 concrete steps)Output MUST be valid JSON and contain ONLY the JSON object, nothing else."""
# User prompt contains the input data
user_prompt = f"""CV:
---
{cv_text}
---
Job Description:
---
{job_description}
---"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
]
# Prepare inputs for the model
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
# Generate the response
outputs = model.generate(
inputs,
max_new_tokens=1024,
temperature=0.01, # Keep temperature low for structured/deterministic output
top_p=0.9,
do_sample=True,
eos_token_id=tokenizer.eos_token_id
)
# Decode the response and clean up
response_text = tokenizer.decode(
outputs[0][inputs.shape[-1]:],
skip_special_tokens=True
).strip()
# Attempt to parse the JSON output
try:
# Robustly find the start and end of the JSON object in the response
start = response_text.find("{")
end = response_text.rfind("}")
json_str = response_text[start:end+1]
parsed = json.loads(json_str)
# --- NEW: Post-process with OpenAI to add human_readable summary ---
if OPENAI_API_KEY and openai_client:
human_readable_text = get_human_readable_summary(parsed)
# Add the summary to the JSON output
parsed["human_readable"] = human_readable_text
return parsed
except Exception as e:
# Fallback for poorly formed output
print(f"JSON Parsing failed: {e}")
return {"raw": response_text, "error": "Failed to parse JSON output from model."}
# --- FastAPI Endpoint ---
@app.post("/api/predict")
async def api_predict(request: MatchRequest):
"""Direct REST API endpoint for CV-JD matching"""
result = match_cv_jd(request.cv_text, request.job_description)
return result
@app.get("/api/health")
async def health_check():
return {"status": "ok", "model_loaded": model is not None}
# --- Example Data ---
EXAMPLE_CV = """**John Doe**
Email: [email protected]
**Summary**
Experienced software engineer with 5 years in Python and backend development, specializing in building high-throughput microservices using FastAPI and Docker.
**Experience**
* Senior Software Engineer at TechCorp (2020-Present): Led migration of monolithic app to microservices, reducing latency by 40%.
"""
EXAMPLE_JD = """**Job Title: Senior Backend Engineer**
Responsibilities: Develop scalable, high-performance backend services using Python, ideally with experience in the FastAPI framework. Must have 4+ years of professional experience and familiarity with containerization (Docker/Kubernetes)."""
# --- Gradio Interface ---
with gr.Blocks(title="CV & Job Matcher") as demo:
gr.Markdown("# π€ CV & Job Description Matcher")
gr.Markdown("Enter a CV and a Job Description to get an automated match score and analysis using a fine-tuned Llama 3.1 model.")
with gr.Row(variant="panel", equal_height=True):
cv_input = gr.Textbox(
label="1. Candidate CV/Resume (Text)",
lines=15,
value=EXAMPLE_CV,
interactive=True,
container=False
)
jd_input = gr.Textbox(
label="2. Job Description (JD) Text",
lines=15,
value=EXAMPLE_JD,
interactive=True,
container=False
)
analyze_btn = gr.Button("π Analyze Match", variant="primary", scale=0)
# The output component for the structured JSON response
output_display = gr.JSON(label="3. Match Output (Structured JSON Response)", scale=1)
# Internal UI Click & External API Access (combined for compatibility)
analyze_btn.click(
fn=match_cv_jd,
inputs=[cv_input, jd_input],
outputs=output_display,
api_name="predict"
)
# --- Mount Gradio on FastAPI ---
app = gr.mount_gradio_app(app, demo, path="/")
# --- Launch ---
if __name__ == "__main__":
load_model()
# Use uvicorn to run the FastAPI app, which hosts the Gradio interface
uvicorn.run(app, host="0.0.0.0", port=7860) |