Spaces:
Sleeping
Sleeping
Commit
·
db0fcf9
1
Parent(s):
6770901
add config usage
Browse files- config/config.json +95 -0
- predict.py +16 -11
- src/utils.py +14 -0
- train.py +36 -140
config/config.json
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"seed": 0,
|
| 3 |
+
"ecfp_radius": 3,
|
| 4 |
+
"ecfp_fpsize": 8192,
|
| 5 |
+
"model_path": "checkpoints/rf_alltasks.joblib",
|
| 6 |
+
"data_folder": "data_tox21/",
|
| 7 |
+
"log_folder": "logs/",
|
| 8 |
+
"debug": 1,
|
| 9 |
+
"task_configs": {
|
| 10 |
+
"NR-AR": {
|
| 11 |
+
"max_depth": "none",
|
| 12 |
+
"max_features": "sqrt",
|
| 13 |
+
"min_samples_leaf": 1,
|
| 14 |
+
"min_samples_split": 5,
|
| 15 |
+
"n_estimators": 1000
|
| 16 |
+
},
|
| 17 |
+
"NR-AR-LBD": {
|
| 18 |
+
"max_depth": 12,
|
| 19 |
+
"max_features": "sqrt",
|
| 20 |
+
"min_samples_leaf": 1,
|
| 21 |
+
"min_samples_split": 5,
|
| 22 |
+
"n_estimators": 1000
|
| 23 |
+
},
|
| 24 |
+
"NR-AhR": {
|
| 25 |
+
"max_depth": "none",
|
| 26 |
+
"max_features": "log2",
|
| 27 |
+
"min_samples_leaf": 1,
|
| 28 |
+
"min_samples_split": 2,
|
| 29 |
+
"n_estimators": 1000
|
| 30 |
+
},
|
| 31 |
+
"NR-Aromatase": {
|
| 32 |
+
"max_depth": "none",
|
| 33 |
+
"max_features": "sqrt",
|
| 34 |
+
"min_samples_leaf": 4,
|
| 35 |
+
"min_samples_split": 12,
|
| 36 |
+
"n_estimators": 1000
|
| 37 |
+
},
|
| 38 |
+
"NR-ER": {
|
| 39 |
+
"max_depth": 10,
|
| 40 |
+
"max_features": "sqrt",
|
| 41 |
+
"min_samples_leaf": 1,
|
| 42 |
+
"min_samples_split": 2,
|
| 43 |
+
"n_estimators": 1000
|
| 44 |
+
},
|
| 45 |
+
"NR-ER-LBD": {
|
| 46 |
+
"max_depth": 8,
|
| 47 |
+
"max_features": "sqrt",
|
| 48 |
+
"min_samples_leaf": 2,
|
| 49 |
+
"min_samples_split": 5,
|
| 50 |
+
"n_estimators": 1000
|
| 51 |
+
},
|
| 52 |
+
"NR-PPAR-gamma": {
|
| 53 |
+
"max_depth": "none",
|
| 54 |
+
"max_features": "log2",
|
| 55 |
+
"min_samples_leaf": 1,
|
| 56 |
+
"min_samples_split": 2,
|
| 57 |
+
"n_estimators": 1000
|
| 58 |
+
},
|
| 59 |
+
"SR-ARE": {
|
| 60 |
+
"max_depth": "none",
|
| 61 |
+
"max_features": "sqrt",
|
| 62 |
+
"min_samples_leaf": 1,
|
| 63 |
+
"min_samples_split": 5,
|
| 64 |
+
"n_estimators": 1000
|
| 65 |
+
},
|
| 66 |
+
"SR-ATAD5": {
|
| 67 |
+
"max_depth": "none",
|
| 68 |
+
"max_features": "sqrt",
|
| 69 |
+
"min_samples_leaf": 1,
|
| 70 |
+
"min_samples_split": 2,
|
| 71 |
+
"n_estimators": 1000
|
| 72 |
+
},
|
| 73 |
+
"SR-HSE": {
|
| 74 |
+
"max_depth": 16,
|
| 75 |
+
"max_features": "log2",
|
| 76 |
+
"min_samples_leaf": 1,
|
| 77 |
+
"min_samples_split": 2,
|
| 78 |
+
"n_estimators": 1000
|
| 79 |
+
},
|
| 80 |
+
"SR-MMP": {
|
| 81 |
+
"max_depth": "none",
|
| 82 |
+
"max_features": "sqrt",
|
| 83 |
+
"min_samples_leaf": 2,
|
| 84 |
+
"min_samples_split": 2,
|
| 85 |
+
"n_estimators": 1000
|
| 86 |
+
},
|
| 87 |
+
"SR-p53": {
|
| 88 |
+
"max_depth": "none",
|
| 89 |
+
"max_features": "sqrt",
|
| 90 |
+
"min_samples_leaf": 1,
|
| 91 |
+
"min_samples_split": 2,
|
| 92 |
+
"n_estimators": 1000
|
| 93 |
+
}
|
| 94 |
+
}
|
| 95 |
+
}
|
predict.py
CHANGED
|
@@ -8,17 +8,16 @@ SMILES and target names as keys.
|
|
| 8 |
# Dependencies
|
| 9 |
from collections import defaultdict
|
| 10 |
|
|
|
|
| 11 |
import numpy as np
|
| 12 |
|
| 13 |
from tqdm import tqdm
|
| 14 |
from src.preprocess import create_descriptors
|
| 15 |
-
from src.utils import TASKS
|
| 16 |
from src.model import Tox21RFClassifier
|
| 17 |
|
| 18 |
# ---------------------------------------------------------------------------------------
|
| 19 |
-
|
| 20 |
-
ECFP_FPSIZE = 8192
|
| 21 |
-
DEBUG = False
|
| 22 |
|
| 23 |
|
| 24 |
def predict(
|
|
@@ -35,8 +34,12 @@ def predict(
|
|
| 35 |
"""
|
| 36 |
print(f"Received {len(smiles_list)} SMILES strings")
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
features, is_clean = create_descriptors(
|
| 39 |
-
smiles_list, radius=
|
| 40 |
)
|
| 41 |
n_clean_mols, n_feats = features.shape
|
| 42 |
print(f"Created {n_feats} descriptors for {n_clean_mols} molecules.")
|
|
@@ -44,10 +47,8 @@ def predict(
|
|
| 44 |
|
| 45 |
# setup model
|
| 46 |
model = Tox21RFClassifier()
|
| 47 |
-
model_path
|
| 48 |
-
model
|
| 49 |
-
|
| 50 |
-
print(f"Loaded model from {model_path}")
|
| 51 |
|
| 52 |
# make predicitons
|
| 53 |
predictions = defaultdict(dict)
|
|
@@ -63,7 +64,7 @@ def predict(
|
|
| 63 |
|
| 64 |
for smiles, pred in zip(smiles_list, preds):
|
| 65 |
predictions[smiles][target] = float(pred)
|
| 66 |
-
if
|
| 67 |
break
|
| 68 |
|
| 69 |
return predictions
|
|
@@ -71,4 +72,8 @@ def predict(
|
|
| 71 |
|
| 72 |
from testing import test_eval
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
# Dependencies
|
| 9 |
from collections import defaultdict
|
| 10 |
|
| 11 |
+
import json
|
| 12 |
import numpy as np
|
| 13 |
|
| 14 |
from tqdm import tqdm
|
| 15 |
from src.preprocess import create_descriptors
|
| 16 |
+
from src.utils import TASKS, normalize_config
|
| 17 |
from src.model import Tox21RFClassifier
|
| 18 |
|
| 19 |
# ---------------------------------------------------------------------------------------
|
| 20 |
+
CONFIG_FILE = "./config/config.json"
|
|
|
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
def predict(
|
|
|
|
| 34 |
"""
|
| 35 |
print(f"Received {len(smiles_list)} SMILES strings")
|
| 36 |
|
| 37 |
+
with open(CONFIG_FILE, "r") as f:
|
| 38 |
+
cfg = json.load(f)
|
| 39 |
+
cfg = normalize_config(cfg)
|
| 40 |
+
|
| 41 |
features, is_clean = create_descriptors(
|
| 42 |
+
smiles_list, radius=cfg["ecfp_radius"], fpsize=cfg["ecfp_fpsize"]
|
| 43 |
)
|
| 44 |
n_clean_mols, n_feats = features.shape
|
| 45 |
print(f"Created {n_feats} descriptors for {n_clean_mols} molecules.")
|
|
|
|
| 47 |
|
| 48 |
# setup model
|
| 49 |
model = Tox21RFClassifier()
|
| 50 |
+
model.load_model(cfg["model_path"])
|
| 51 |
+
print(f"Loaded model from {cfg['model_path']}")
|
|
|
|
|
|
|
| 52 |
|
| 53 |
# make predicitons
|
| 54 |
predictions = defaultdict(dict)
|
|
|
|
| 64 |
|
| 65 |
for smiles, pred in zip(smiles_list, preds):
|
| 66 |
predictions[smiles][target] = float(pred)
|
| 67 |
+
if cfg["debug"]:
|
| 68 |
break
|
| 69 |
|
| 70 |
return predictions
|
|
|
|
| 72 |
|
| 73 |
from testing import test_eval
|
| 74 |
|
| 75 |
+
with open(CONFIG_FILE, "r") as f:
|
| 76 |
+
cfg = json.load(f)
|
| 77 |
+
cfg = normalize_config(cfg)
|
| 78 |
+
|
| 79 |
+
test_eval(predict, debug=cfg["debug"], use_only_clean=False, use_only_first=False)
|
src/utils.py
CHANGED
|
@@ -450,3 +450,17 @@ def create_dir(path, is_file=False):
|
|
| 450 |
to_create = os.path.dirname(path) if is_file else path
|
| 451 |
if not os.path.exists(to_create):
|
| 452 |
os.makedirs(to_create)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 450 |
to_create = os.path.dirname(path) if is_file else path
|
| 451 |
if not os.path.exists(to_create):
|
| 452 |
os.makedirs(to_create)
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
def normalize_config(config: dict):
|
| 456 |
+
"""Normalizes a json config recursively by applying a mapping"""
|
| 457 |
+
mapping = {"none": None, "true": True, "false": False}
|
| 458 |
+
new_config = {}
|
| 459 |
+
for key, val in config.items():
|
| 460 |
+
if isinstance(val, dict):
|
| 461 |
+
new_config[key] = normalize_config(val)
|
| 462 |
+
elif val in mapping:
|
| 463 |
+
new_config[key] = mapping[val]
|
| 464 |
+
else:
|
| 465 |
+
new_config[key] = val
|
| 466 |
+
return new_config
|
train.py
CHANGED
|
@@ -3,6 +3,7 @@ Script for fitting and saving any preprocessing assets, as well as the fitted RF
|
|
| 3 |
"""
|
| 4 |
|
| 5 |
import os
|
|
|
|
| 6 |
import random
|
| 7 |
import logging
|
| 8 |
import argparse
|
|
@@ -15,126 +16,20 @@ from datetime import datetime
|
|
| 15 |
from src.model import Tox21RFClassifier
|
| 16 |
from src.utils import (
|
| 17 |
create_dir,
|
|
|
|
| 18 |
USED_200_DESCR,
|
| 19 |
)
|
| 20 |
|
| 21 |
-
DEBUG = True
|
| 22 |
-
|
| 23 |
parser = argparse.ArgumentParser(description="RF Training script for Tox21 dataset")
|
| 24 |
|
| 25 |
parser.add_argument(
|
| 26 |
-
"--
|
| 27 |
-
type=str,
|
| 28 |
-
default="checkpoints/rf_alltasks.joblib",
|
| 29 |
-
)
|
| 30 |
-
parser.add_argument(
|
| 31 |
-
"--data_folder",
|
| 32 |
type=str,
|
| 33 |
-
default="
|
| 34 |
-
)
|
| 35 |
-
parser.add_argument(
|
| 36 |
-
"--seed",
|
| 37 |
-
type=int,
|
| 38 |
-
default=0,
|
| 39 |
-
)
|
| 40 |
-
parser.add_argument(
|
| 41 |
-
"--log_folder",
|
| 42 |
-
type=str,
|
| 43 |
-
default="logs/",
|
| 44 |
)
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
task_config = {
|
| 50 |
-
"NR-AR": {
|
| 51 |
-
"max_depth": None,
|
| 52 |
-
"max_features": "sqrt",
|
| 53 |
-
"min_samples_leaf": 1,
|
| 54 |
-
"min_samples_split": 5,
|
| 55 |
-
"n_estimators": 1000,
|
| 56 |
-
},
|
| 57 |
-
"NR-AR-LBD": {
|
| 58 |
-
"max_depth": 12,
|
| 59 |
-
"max_features": "sqrt",
|
| 60 |
-
"min_samples_leaf": 1,
|
| 61 |
-
"min_samples_split": 5,
|
| 62 |
-
"n_estimators": 1000,
|
| 63 |
-
},
|
| 64 |
-
"NR-AhR": {
|
| 65 |
-
"max_depth": None,
|
| 66 |
-
"max_features": "log2",
|
| 67 |
-
"min_samples_leaf": 1,
|
| 68 |
-
"min_samples_split": 2,
|
| 69 |
-
"n_estimators": 1000,
|
| 70 |
-
}, # {'cls__max_depth': None, 'cls__max_features': 'log2', 'cls__min_samples_leaf': 1, 'cls__min_samples_split': 2, 'cls__n_estimators': 1000}
|
| 71 |
-
"NR-Aromatase": {
|
| 72 |
-
"max_depth": None,
|
| 73 |
-
"max_features": "sqrt",
|
| 74 |
-
"min_samples_leaf": 4,
|
| 75 |
-
"min_samples_split": 12,
|
| 76 |
-
"n_estimators": 1000,
|
| 77 |
-
}, # {'cls__max_depth': None, 'cls__max_features': 'sqrt', 'cls__min_samples_leaf': 4, 'cls__min_samples_split': 12, 'cls__n_estimators': 1000}
|
| 78 |
-
"NR-ER": {
|
| 79 |
-
"max_depth": 10,
|
| 80 |
-
"max_features": "sqrt",
|
| 81 |
-
"min_samples_leaf": 1,
|
| 82 |
-
"min_samples_split": 2,
|
| 83 |
-
"n_estimators": 1000,
|
| 84 |
-
}, # {'cls__max_depth': 10, 'cls__max_features': 'sqrt', 'cls__min_samples_leaf': 1, 'cls__min_samples_split': 2, 'cls__n_estimators': 1000}
|
| 85 |
-
"NR-ER-LBD": {
|
| 86 |
-
"max_depth": 8,
|
| 87 |
-
"max_features": "sqrt",
|
| 88 |
-
"min_samples_leaf": 2,
|
| 89 |
-
"min_samples_split": 5,
|
| 90 |
-
"n_estimators": 1000,
|
| 91 |
-
}, # {'cls__max_depth': 8, 'cls__max_features': 'sqrt', 'cls__min_samples_leaf': 2, 'cls__min_samples_split': 5, 'cls__n_estimators': 1000}
|
| 92 |
-
"NR-PPAR-gamma": {
|
| 93 |
-
"max_depth": None,
|
| 94 |
-
"max_features": "log2",
|
| 95 |
-
"min_samples_leaf": 1,
|
| 96 |
-
"min_samples_split": 2,
|
| 97 |
-
"n_estimators": 1000,
|
| 98 |
-
}, # {'cls__max_depth': None, 'cls__max_features': 'log2', 'cls__min_samples_leaf': 1, 'cls__min_samples_split': 2, 'cls__n_estimators': 1000}
|
| 99 |
-
"SR-ARE": {
|
| 100 |
-
"max_depth": None,
|
| 101 |
-
"max_features": "sqrt",
|
| 102 |
-
"min_samples_leaf": 1,
|
| 103 |
-
"min_samples_split": 5,
|
| 104 |
-
"n_estimators": 1000,
|
| 105 |
-
}, # {'cls__max_depth': None, 'cls__max_features': 'sqrt', 'cls__min_samples_leaf': 1, 'cls__min_samples_split': 5, 'cls__n_estimators': 1000}
|
| 106 |
-
"SR-ATAD5": {
|
| 107 |
-
"max_depth": None,
|
| 108 |
-
"max_features": "sqrt",
|
| 109 |
-
"min_samples_leaf": 1,
|
| 110 |
-
"min_samples_split": 2,
|
| 111 |
-
"n_estimators": 1000,
|
| 112 |
-
}, # {'cls__max_depth': None, 'cls__max_features': 'sqrt', 'cls__min_samples_leaf': 1, 'cls__min_samples_split': 2, 'cls__n_estimators': 1000}
|
| 113 |
-
"SR-HSE": {
|
| 114 |
-
"max_depth": 16,
|
| 115 |
-
"max_features": "log2",
|
| 116 |
-
"min_samples_leaf": 1,
|
| 117 |
-
"min_samples_split": 2,
|
| 118 |
-
"n_estimators": 1000,
|
| 119 |
-
}, # {'cls__max_depth': 16, 'cls__max_features': 'log2', 'cls__min_samples_leaf': 1, 'cls__min_samples_split': 2, 'cls__n_estimators': 1000}
|
| 120 |
-
"SR-MMP": {
|
| 121 |
-
"max_depth": None,
|
| 122 |
-
"max_features": "sqrt",
|
| 123 |
-
"min_samples_leaf": 2,
|
| 124 |
-
"min_samples_split": 2,
|
| 125 |
-
"n_estimators": 1000,
|
| 126 |
-
}, # {'cls__max_depth': None, 'cls__max_features': 'sqrt', 'cls__min_samples_leaf': 2, 'cls__min_samples_split': 2, 'cls__n_estimators': 1000}
|
| 127 |
-
"SR-p53": {
|
| 128 |
-
"max_depth": None,
|
| 129 |
-
"max_features": "sqrt",
|
| 130 |
-
"min_samples_leaf": 1,
|
| 131 |
-
"min_samples_split": 2,
|
| 132 |
-
"n_estimators": 1000,
|
| 133 |
-
}, # {'cls__max_depth': None, 'cls__max_features': 'sqrt', 'cls__min_samples_leaf': 1, 'cls__min_samples_split': 2, 'cls__n_estimators': 1000}
|
| 134 |
-
}
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
def main(args):
|
| 138 |
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
| 139 |
|
| 140 |
# setup logger
|
|
@@ -146,7 +41,7 @@ def main(args):
|
|
| 146 |
handlers=[
|
| 147 |
logging.FileHandler(
|
| 148 |
os.path.join(
|
| 149 |
-
|
| 150 |
f"{script_name}_{timestamp}.log",
|
| 151 |
)
|
| 152 |
),
|
|
@@ -154,19 +49,25 @@ def main(args):
|
|
| 154 |
],
|
| 155 |
)
|
| 156 |
|
| 157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
|
| 159 |
# seeding
|
| 160 |
-
random.seed(
|
| 161 |
-
np.random.seed(
|
| 162 |
|
| 163 |
-
train_data = np.load(os.path.join(
|
| 164 |
train_X = train_data[
|
| 165 |
"features"
|
| 166 |
] # np.concatenate([train_data[descr] for descr in KNOWN_DESCR], axis=1)
|
| 167 |
train_y = train_data["labels"]
|
| 168 |
|
| 169 |
-
val_data = np.load(os.path.join(
|
| 170 |
val_X = val_data[
|
| 171 |
"features"
|
| 172 |
] # np.concatenate([val_data[descr] for descr in KNOWN_DESCR], axis=1)
|
|
@@ -174,22 +75,13 @@ def main(args):
|
|
| 174 |
|
| 175 |
data = np.concatenate([train_X, val_X], axis=0)
|
| 176 |
labels = np.concatenate([train_y, val_y], axis=0)
|
| 177 |
-
|
| 178 |
-
# # remove molecules that couldn't be sanitized
|
| 179 |
-
# mask = ~np.isnan(train_X).any(axis=1)
|
| 180 |
-
# train_X = train_X[mask]
|
| 181 |
-
# train_y = train_y[mask]
|
| 182 |
|
| 183 |
full_data = np.load(
|
| 184 |
"data/tox21_descriptors.npz",
|
| 185 |
allow_pickle=True,
|
| 186 |
)
|
| 187 |
|
| 188 |
-
# train_val_mask = full_data["sets"] != "test"
|
| 189 |
-
# data = full_data["features"][train_val_mask]
|
| 190 |
-
# labels = full_data["labels"][train_val_mask]
|
| 191 |
-
print("Train data shape:", data.shape)
|
| 192 |
-
|
| 193 |
test_mask = full_data["sets"] == "test"
|
| 194 |
test_data = full_data["features"][test_mask]
|
| 195 |
test_labels = full_data["labels"][test_mask]
|
|
@@ -197,43 +89,43 @@ def main(args):
|
|
| 197 |
data.shape[1] == test_data.shape[1]
|
| 198 |
), "different number of features found in train and test set!"
|
| 199 |
|
| 200 |
-
if
|
| 201 |
logger.info(
|
| 202 |
-
f"Fitted RandomForestClassifier will be saved
|
| 203 |
)
|
| 204 |
else:
|
| 205 |
logger.info("Fitted RandomForestClassifier will NOT be saved.")
|
| 206 |
|
| 207 |
rdkit_descr_idxs = np.arange(data.shape[1] - len(USED_200_DESCR), data.shape[1])
|
| 208 |
model = Tox21RFClassifier(
|
| 209 |
-
seed=
|
|
|
|
|
|
|
| 210 |
)
|
| 211 |
|
| 212 |
logger.info("Start training.")
|
| 213 |
-
print("Start training.")
|
| 214 |
for i, task in enumerate(model.tasks):
|
| 215 |
-
logger.info(f"Fitting task: {task}")
|
| 216 |
task_labels = labels[:, i]
|
| 217 |
label_mask = ~np.isnan(task_labels)
|
|
|
|
| 218 |
|
| 219 |
task_data = data[label_mask]
|
| 220 |
task_labels = task_labels[label_mask].astype(int)
|
| 221 |
|
| 222 |
-
print(f"Fit task {task} using {sum(label_mask)} samples")
|
| 223 |
model.fit(task, task_data, task_labels)
|
| 224 |
|
| 225 |
log_text = f"Finished training."
|
| 226 |
logger.info(log_text)
|
| 227 |
|
| 228 |
-
if
|
| 229 |
-
model.save_model(
|
| 230 |
-
logger.info(f"Save model as: {
|
| 231 |
|
| 232 |
del model
|
| 233 |
model = Tox21RFClassifier()
|
| 234 |
-
model.load_model(
|
| 235 |
|
| 236 |
-
|
| 237 |
results = {}
|
| 238 |
preds = np.empty_like(test_labels, dtype=np.float32)
|
| 239 |
for i, task in enumerate(model.tasks):
|
|
@@ -256,6 +148,10 @@ def main(args):
|
|
| 256 |
if __name__ == "__main__":
|
| 257 |
args = parser.parse_args()
|
| 258 |
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
-
main(
|
|
|
|
| 3 |
"""
|
| 4 |
|
| 5 |
import os
|
| 6 |
+
import json
|
| 7 |
import random
|
| 8 |
import logging
|
| 9 |
import argparse
|
|
|
|
| 16 |
from src.model import Tox21RFClassifier
|
| 17 |
from src.utils import (
|
| 18 |
create_dir,
|
| 19 |
+
normalize_config,
|
| 20 |
USED_200_DESCR,
|
| 21 |
)
|
| 22 |
|
|
|
|
|
|
|
| 23 |
parser = argparse.ArgumentParser(description="RF Training script for Tox21 dataset")
|
| 24 |
|
| 25 |
parser.add_argument(
|
| 26 |
+
"--config",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
type=str,
|
| 28 |
+
default="config/config.json",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
)
|
| 30 |
|
| 31 |
+
|
| 32 |
+
def main(cfg):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
| 34 |
|
| 35 |
# setup logger
|
|
|
|
| 41 |
handlers=[
|
| 42 |
logging.FileHandler(
|
| 43 |
os.path.join(
|
| 44 |
+
cfg["log_folder"],
|
| 45 |
f"{script_name}_{timestamp}.log",
|
| 46 |
)
|
| 47 |
),
|
|
|
|
| 49 |
],
|
| 50 |
)
|
| 51 |
|
| 52 |
+
task_configs = cfg.pop("task_configs")
|
| 53 |
+
logger.info(f"Config: {cfg}")
|
| 54 |
+
task_configs_repr = "Task configs: \n" + "\n".join(
|
| 55 |
+
[str(val) for key, val in task_configs.items()]
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
logger.info(f"Task configs: \n{task_configs_repr}")
|
| 59 |
|
| 60 |
# seeding
|
| 61 |
+
random.seed(cfg["seed"])
|
| 62 |
+
np.random.seed(cfg["seed"])
|
| 63 |
|
| 64 |
+
train_data = np.load(os.path.join(cfg["data_folder"], "tox21_train_cv4.npz"))
|
| 65 |
train_X = train_data[
|
| 66 |
"features"
|
| 67 |
] # np.concatenate([train_data[descr] for descr in KNOWN_DESCR], axis=1)
|
| 68 |
train_y = train_data["labels"]
|
| 69 |
|
| 70 |
+
val_data = np.load(os.path.join(cfg["data_folder"], "tox21_validation_cv4.npz"))
|
| 71 |
val_X = val_data[
|
| 72 |
"features"
|
| 73 |
] # np.concatenate([val_data[descr] for descr in KNOWN_DESCR], axis=1)
|
|
|
|
| 75 |
|
| 76 |
data = np.concatenate([train_X, val_X], axis=0)
|
| 77 |
labels = np.concatenate([train_y, val_y], axis=0)
|
| 78 |
+
logger.info(f"Train data shape: {data.shape}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
full_data = np.load(
|
| 81 |
"data/tox21_descriptors.npz",
|
| 82 |
allow_pickle=True,
|
| 83 |
)
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
test_mask = full_data["sets"] == "test"
|
| 86 |
test_data = full_data["features"][test_mask]
|
| 87 |
test_labels = full_data["labels"][test_mask]
|
|
|
|
| 89 |
data.shape[1] == test_data.shape[1]
|
| 90 |
), "different number of features found in train and test set!"
|
| 91 |
|
| 92 |
+
if cfg["model_path"]:
|
| 93 |
logger.info(
|
| 94 |
+
f"Fitted RandomForestClassifier will be saved as: {cfg['model_path']}"
|
| 95 |
)
|
| 96 |
else:
|
| 97 |
logger.info("Fitted RandomForestClassifier will NOT be saved.")
|
| 98 |
|
| 99 |
rdkit_descr_idxs = np.arange(data.shape[1] - len(USED_200_DESCR), data.shape[1])
|
| 100 |
model = Tox21RFClassifier(
|
| 101 |
+
seed=cfg["seed"],
|
| 102 |
+
task_config=task_configs,
|
| 103 |
+
rdkit_desc_idxs=rdkit_descr_idxs,
|
| 104 |
)
|
| 105 |
|
| 106 |
logger.info("Start training.")
|
|
|
|
| 107 |
for i, task in enumerate(model.tasks):
|
|
|
|
| 108 |
task_labels = labels[:, i]
|
| 109 |
label_mask = ~np.isnan(task_labels)
|
| 110 |
+
logger.info(f"Fit task {task} using {sum(label_mask)} samples")
|
| 111 |
|
| 112 |
task_data = data[label_mask]
|
| 113 |
task_labels = task_labels[label_mask].astype(int)
|
| 114 |
|
|
|
|
| 115 |
model.fit(task, task_data, task_labels)
|
| 116 |
|
| 117 |
log_text = f"Finished training."
|
| 118 |
logger.info(log_text)
|
| 119 |
|
| 120 |
+
if cfg["model_path"]:
|
| 121 |
+
model.save_model(cfg["model_path"])
|
| 122 |
+
logger.info(f"Save model as: {cfg['model_path']}")
|
| 123 |
|
| 124 |
del model
|
| 125 |
model = Tox21RFClassifier()
|
| 126 |
+
model.load_model(cfg["model_path"])
|
| 127 |
|
| 128 |
+
logger.info("Evaluate model")
|
| 129 |
results = {}
|
| 130 |
preds = np.empty_like(test_labels, dtype=np.float32)
|
| 131 |
for i, task in enumerate(model.tasks):
|
|
|
|
| 148 |
if __name__ == "__main__":
|
| 149 |
args = parser.parse_args()
|
| 150 |
|
| 151 |
+
with open(args.config, "r") as f:
|
| 152 |
+
cfg = json.load(f)
|
| 153 |
+
cfg = normalize_config(cfg)
|
| 154 |
+
|
| 155 |
+
create_dir(cfg["log_folder"])
|
| 156 |
|
| 157 |
+
main(cfg)
|