Spaces:
Sleeping
Sleeping
Commit
·
97697e0
1
Parent(s):
b004460
adapt load/saving, preprocessing, app, readme, modelcard
Browse files- MODELCARD.md → MODEL_CARD.md +1 -5
- README.md +27 -33
- app.py +2 -2
- config/config.json +5 -3
- predict.py +2 -3
- src/model.py +12 -7
- src/preprocess.py +75 -24
- src/utils.py +0 -2
- train.py +3 -4
MODELCARD.md → MODEL_CARD.md
RENAMED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
# Model card - tox21_rf_classifier
|
| 2 |
### Model details
|
| 3 |
- Model name: Random Forest Tox21 Baseline
|
| 4 |
-
- Developer:
|
| 5 |
- Paper URL: https://link.springer.com/article/10.1023/A:1010933404324
|
| 6 |
- Model type / architecture:
|
| 7 |
- Random Forest implemented using sklearn.RandomForestClassifier.
|
|
@@ -29,7 +29,3 @@ Tox21 training and validation sets.
|
|
| 29 |
|
| 30 |
### Evaluation data
|
| 31 |
Tox21 test set.
|
| 32 |
-
|
| 33 |
-
### Hugging Face Space details
|
| 34 |
-
- Space: MASKED-FOR-REVIEW
|
| 35 |
-
- Git commit hash: MASKED-FOR-REVIEW
|
|
|
|
| 1 |
# Model card - tox21_rf_classifier
|
| 2 |
### Model details
|
| 3 |
- Model name: Random Forest Tox21 Baseline
|
| 4 |
+
- Developer: JKU (Linz)
|
| 5 |
- Paper URL: https://link.springer.com/article/10.1023/A:1010933404324
|
| 6 |
- Model type / architecture:
|
| 7 |
- Random Forest implemented using sklearn.RandomForestClassifier.
|
|
|
|
| 29 |
|
| 30 |
### Evaluation data
|
| 31 |
Tox21 test set.
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -6,31 +6,39 @@ colorTo: purple
|
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: cc-by-nc-4.0
|
| 9 |
-
short_description:
|
| 10 |
---
|
| 11 |
|
| 12 |
# Tox21 Random Forest Classifier
|
| 13 |
|
| 14 |
-
This repository hosts a Hugging Face Space that provides an
|
| 15 |
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
|
| 25 |
# Repository Structure
|
| 26 |
- `predict.py` - Defines the `predict()` function required by the leaderboard (entry point for inference).
|
| 27 |
- `app.py` - FastAPI application wrapper (can be used as-is).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
- `src/` - Core model & preprocessing logic:
|
| 30 |
-
- `
|
| 31 |
-
- `model.py` -
|
| 32 |
-
- `
|
| 33 |
-
- `utils.py` – Constants and Helper functions
|
| 34 |
|
| 35 |
# Quickstart with Spaces
|
| 36 |
|
|
@@ -44,13 +52,17 @@ You can easily adapt this project in your own Hugging Face account:
|
|
| 44 |
|
| 45 |
- Modify `predict()` inside `predict.py` to perform model inference while keeping the function skeleton unchanged to remain compatible with the leaderboard.
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
That’s it, your model will be available as an API endpoint for the Tox21 Leaderboard.
|
| 48 |
|
| 49 |
# Installation
|
| 50 |
To run (and train) the random forest, clone the repository and install dependencies:
|
| 51 |
|
| 52 |
```bash
|
| 53 |
-
git clone https://huggingface.co/spaces/
|
| 54 |
cd tox_21_rf_classifier
|
| 55 |
|
| 56 |
conda create -n tox21_rf_cls python=3.11
|
|
@@ -58,22 +70,6 @@ conda activate tox21_rf_cls
|
|
| 58 |
pip install -r requirements.txt
|
| 59 |
```
|
| 60 |
|
| 61 |
-
# Training
|
| 62 |
-
|
| 63 |
-
To train the Random Forest model from scratch:
|
| 64 |
-
|
| 65 |
-
```bash
|
| 66 |
-
python -m src/train.py
|
| 67 |
-
```
|
| 68 |
-
|
| 69 |
-
This will:
|
| 70 |
-
|
| 71 |
-
1. Load and preprocess the Tox21 training dataset.
|
| 72 |
-
2. Train a Random Forest classifier.
|
| 73 |
-
3. Save the trained model to the assets/ folder.
|
| 74 |
-
4. Evaluate the trained Random Forest classifier on the validation split.
|
| 75 |
-
|
| 76 |
-
|
| 77 |
# Inference
|
| 78 |
|
| 79 |
For inference, you only need `predict.py`.
|
|
@@ -101,8 +97,6 @@ The output will be a nested dictionary in the format:
|
|
| 101 |
|
| 102 |
# Notes
|
| 103 |
|
| 104 |
-
-
|
| 105 |
-
|
| 106 |
-
- Training (`src/train.py`) is provided for reproducibility.
|
| 107 |
|
| 108 |
-
- Preprocessing
|
|
|
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: cc-by-nc-4.0
|
| 9 |
+
short_description: Random Forest Baseline for Tox21
|
| 10 |
---
|
| 11 |
|
| 12 |
# Tox21 Random Forest Classifier
|
| 13 |
|
| 14 |
+
This repository hosts a Hugging Face Space that provides an API for submitting models to the [Tox21 Leaderboard](https://huggingface.co/spaces/tschouis/tox21_leaderboard).
|
| 15 |
|
| 16 |
+
Here **Random Forest (RF)** models are trained on the Tox21 dataset, and the trained models are provided for inference. For each of the twelve toxic effects, a separate RF model is trained. The input to the model is a **SMILES** string of the small molecule, and the output are 12 numeric values for each of the toxic effects of the Tox21 dataset.
|
| 17 |
|
| 18 |
+
**Important:** For leaderboard submission, your Space needs to include training code. The file `train.py` should train the model using the config specified inside the `config/` folder and save the final model parameters into a file inside the `checkpoints/` folder. The model should be trained using the [Tox21_dataset](https://huggingface.co/datasets/tschouis/tox21) provided on Hugging Face. The datasets can be loaded like this:
|
| 19 |
+
```python
|
| 20 |
+
from datasets import load_dataset
|
| 21 |
+
ds = load_dataset("ml-jku/tox21", token=token)
|
| 22 |
+
train_df = ds["train"].to_pandas()
|
| 23 |
+
val_df = ds["validation"].to_pandas()
|
| 24 |
+
```
|
| 25 |
|
| 26 |
+
Additionally, the Space needs to implement inference in the `predict()` function inside `predict.py`. The `predict()` function must keep the provided skeleton: it should take a list of SMILES strings as input and return a nested prediction dictionary as output, with SMILES as keys and dictionaries containing targetname-prediction pairs as values. Therefore, any preprocessing of SMILES strings must be executed on-the-fly during inference.
|
| 27 |
|
| 28 |
# Repository Structure
|
| 29 |
- `predict.py` - Defines the `predict()` function required by the leaderboard (entry point for inference).
|
| 30 |
- `app.py` - FastAPI application wrapper (can be used as-is).
|
| 31 |
+
- `preprocess.py` - preprocesses SMILES strings to generate feature descriptors and saves results as NPZ files in `data/`.
|
| 32 |
+
- `train.py` - trains and saves a model using the config in the `config/` folder.
|
| 33 |
+
- `config/` - the config file used by `train.py`.
|
| 34 |
+
- `logs/` - all the logs of `train.py`, the saved model, and predictions on the validation set.
|
| 35 |
+
- `data/` - RF uses numerical data. During preprocessing in `preprocess.py` two NPZ files containing molecule features are created and saved here.
|
| 36 |
+
- `checkpoints/` - the saved model that is used in `predict.py` is here.
|
| 37 |
|
| 38 |
- `src/` - Core model & preprocessing logic:
|
| 39 |
+
- `preprocess.py` - SMILES preprocessing logic
|
| 40 |
+
- `model.py` - RF model class with processing, saving and loading logic
|
| 41 |
+
- `utils.py` - utility functions
|
|
|
|
| 42 |
|
| 43 |
# Quickstart with Spaces
|
| 44 |
|
|
|
|
| 52 |
|
| 53 |
- Modify `predict()` inside `predict.py` to perform model inference while keeping the function skeleton unchanged to remain compatible with the leaderboard.
|
| 54 |
|
| 55 |
+
- Modify `train.py` and/or `preprocess.py` according to your model and preprocessing pipeline.
|
| 56 |
+
|
| 57 |
+
- Modify the file inside `config/` to contain all hyperparameters that are set in `train.py`.
|
| 58 |
+
|
| 59 |
That’s it, your model will be available as an API endpoint for the Tox21 Leaderboard.
|
| 60 |
|
| 61 |
# Installation
|
| 62 |
To run (and train) the random forest, clone the repository and install dependencies:
|
| 63 |
|
| 64 |
```bash
|
| 65 |
+
git clone https://huggingface.co/spaces/tschouis/tox21_rf_classifier
|
| 66 |
cd tox_21_rf_classifier
|
| 67 |
|
| 68 |
conda create -n tox21_rf_cls python=3.11
|
|
|
|
| 70 |
pip install -r requirements.txt
|
| 71 |
```
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
# Inference
|
| 74 |
|
| 75 |
For inference, you only need `predict.py`.
|
|
|
|
| 97 |
|
| 98 |
# Notes
|
| 99 |
|
| 100 |
+
- Adapting `predict.py`, `train.py`, `config/`, and `checkpoints/` is required for leaderboard submission.
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
- Preprocessing must be done inside `predict.py` not just `train.py`.
|
app.py
CHANGED
|
@@ -44,7 +44,7 @@ def root():
|
|
| 44 |
@app.get("/metadata")
|
| 45 |
def metadata():
|
| 46 |
return {
|
| 47 |
-
"name": "
|
| 48 |
"version": "1.0.0",
|
| 49 |
"max_batch_size": 256,
|
| 50 |
"tox_endpoints": [
|
|
@@ -74,5 +74,5 @@ def predict(request: Request):
|
|
| 74 |
predictions = predict_func(request.smiles)
|
| 75 |
return {
|
| 76 |
"predictions": predictions,
|
| 77 |
-
"model_info": {"name": "
|
| 78 |
}
|
|
|
|
| 44 |
@app.get("/metadata")
|
| 45 |
def metadata():
|
| 46 |
return {
|
| 47 |
+
"name": "RF",
|
| 48 |
"version": "1.0.0",
|
| 49 |
"max_batch_size": 256,
|
| 50 |
"tox_endpoints": [
|
|
|
|
| 74 |
predictions = predict_func(request.smiles)
|
| 75 |
return {
|
| 76 |
"predictions": predictions,
|
| 77 |
+
"model_info": {"name": "RF", "version": "1.0.0"},
|
| 78 |
}
|
config/config.json
CHANGED
|
@@ -17,9 +17,11 @@
|
|
| 17 |
"use": "true",
|
| 18 |
"min_var": 0.01,
|
| 19 |
"max_corr": 0.95,
|
| 20 |
-
"
|
| 21 |
-
"
|
| 22 |
-
"
|
|
|
|
|
|
|
| 23 |
},
|
| 24 |
"feature_quantilization": {
|
| 25 |
"use": "true",
|
|
|
|
| 17 |
"use": "true",
|
| 18 |
"min_var": 0.01,
|
| 19 |
"max_corr": 0.95,
|
| 20 |
+
"max_features": -1,
|
| 21 |
+
"min_var__feature_keys": ["ecfps", "tox", "maccs", "rdkit_descrs"],
|
| 22 |
+
"max_corr__feature_keys": ["ecfps", "tox", "maccs", "rdkit_descrs"],
|
| 23 |
+
"min_var__independent_keys": "false",
|
| 24 |
+
"max_corr__independent_keys": "false"
|
| 25 |
},
|
| 26 |
"feature_quantilization": {
|
| 27 |
"use": "true",
|
predict.py
CHANGED
|
@@ -57,12 +57,11 @@ def predict(
|
|
| 57 |
scaler=config["scaler"],
|
| 58 |
)
|
| 59 |
|
| 60 |
-
|
| 61 |
-
model.set_state(state)
|
| 62 |
print(f"Loaded model from {config['ckpt_path']}")
|
| 63 |
|
| 64 |
state = joblib.load(config["preprocessor_path"])
|
| 65 |
-
preprocessor.
|
| 66 |
print(f"Loaded preprocessor from {config['preprocessor_path']}")
|
| 67 |
|
| 68 |
# make predicitons
|
|
|
|
| 57 |
scaler=config["scaler"],
|
| 58 |
)
|
| 59 |
|
| 60 |
+
model.load(config["ckpt_path"])
|
|
|
|
| 61 |
print(f"Loaded model from {config['ckpt_path']}")
|
| 62 |
|
| 63 |
state = joblib.load(config["preprocessor_path"])
|
| 64 |
+
preprocessor.set_state(state)
|
| 65 |
print(f"Loaded preprocessor from {config['preprocessor_path']}")
|
| 66 |
|
| 67 |
# make predicitons
|
src/model.py
CHANGED
|
@@ -6,6 +6,7 @@ SMILES and target names as keys.
|
|
| 6 |
|
| 7 |
# ---------------------------------------------------------------------------------------
|
| 8 |
# Dependencies
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
from sklearn.ensemble import RandomForestClassifier
|
| 11 |
|
|
@@ -33,17 +34,21 @@ class Tox21RFClassifier:
|
|
| 33 |
for task in self.tasks
|
| 34 |
}
|
| 35 |
|
| 36 |
-
def
|
| 37 |
-
"""
|
| 38 |
|
| 39 |
Args:
|
| 40 |
-
|
| 41 |
"""
|
| 42 |
-
self.models =
|
| 43 |
|
| 44 |
-
def
|
| 45 |
-
"""
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
def fit(self, task: str, X: np.ndarray, y: np.ndarray) -> None:
|
| 49 |
"""Train the random forest for a given task
|
|
|
|
| 6 |
|
| 7 |
# ---------------------------------------------------------------------------------------
|
| 8 |
# Dependencies
|
| 9 |
+
import joblib
|
| 10 |
import numpy as np
|
| 11 |
from sklearn.ensemble import RandomForestClassifier
|
| 12 |
|
|
|
|
| 34 |
for task in self.tasks
|
| 35 |
}
|
| 36 |
|
| 37 |
+
def load(self, path: str) -> None:
|
| 38 |
+
"""Load model from filepath
|
| 39 |
|
| 40 |
Args:
|
| 41 |
+
path (str): filepath to model checkpoint
|
| 42 |
"""
|
| 43 |
+
self.models = joblib.load(path)
|
| 44 |
|
| 45 |
+
def save(self, path: str) -> None:
|
| 46 |
+
"""Save model to filepath
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
path (str): filepath to model checkpoint
|
| 50 |
+
"""
|
| 51 |
+
joblib.dump(self.models, path)
|
| 52 |
|
| 53 |
def fit(self, task: str, X: np.ndarray, y: np.ndarray) -> None:
|
| 54 |
"""Train the random forest for a given task
|
src/preprocess.py
CHANGED
|
@@ -78,7 +78,7 @@ class SubSampler(TransformerMixin, BaseEstimator):
|
|
| 78 |
_X = X.copy()
|
| 79 |
_y = y.copy() if y is not None else None
|
| 80 |
|
| 81 |
-
if self.max_samples > 0:
|
| 82 |
resample_idxs = np.random.choice(
|
| 83 |
np.arange(_X.shape[0]), size=(self.max_samples,), replace=True
|
| 84 |
)
|
|
@@ -127,21 +127,32 @@ class FeatureSelector(FeatureDictMixin, TransformerMixin, BaseEstimator):
|
|
| 127 |
max_corr=1.0,
|
| 128 |
max_features=-1,
|
| 129 |
feature_keys=None,
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
):
|
| 132 |
self.min_var = min_var
|
| 133 |
self.max_corr = max_corr
|
| 134 |
self.max_features = max_features
|
| 135 |
-
|
| 136 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
super().__init__(feature_keys=feature_keys)
|
| 139 |
|
| 140 |
-
def
|
| 141 |
var_thresh = VarianceThreshold(threshold=self.min_var)
|
| 142 |
return var_thresh.fit(X).get_support() # mask
|
| 143 |
|
| 144 |
-
def
|
| 145 |
self, X: np.ndarray, prev_feature_mask: np.ndarray
|
| 146 |
) -> np.ndarray:
|
| 147 |
_prev_feature_mask = prev_feature_mask.copy()
|
|
@@ -156,45 +167,86 @@ class FeatureSelector(FeatureDictMixin, TransformerMixin, BaseEstimator):
|
|
| 156 |
_prev_feature_mask[_prev_feature_mask] = to_keep
|
| 157 |
return _prev_feature_mask
|
| 158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
def fit(self, X: dict[str, np.ndarray]):
|
| 160 |
_X = self.dict_to_array(X)
|
| 161 |
feature_mask = np.ones((_X.shape[1]), dtype=bool)
|
| 162 |
|
| 163 |
# select features with at least min_var variation
|
| 164 |
if self.min_var > 0.0:
|
| 165 |
-
if self.
|
| 166 |
-
for key in self.
|
| 167 |
key_mask = self._curr_keys == key
|
| 168 |
-
|
| 169 |
-
feature_mask[key_mask] = self._get_min_var_feature_mask(subset)
|
| 170 |
|
| 171 |
else:
|
| 172 |
-
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
# select features with at least max_var variation
|
| 175 |
if self.max_corr < 1.0:
|
| 176 |
-
if self.
|
| 177 |
-
for key in self.
|
| 178 |
key_mask = self._curr_keys == key
|
| 179 |
subset = _X[:, key_mask]
|
| 180 |
-
feature_mask[key_mask] = self.
|
| 181 |
subset, feature_mask[key_mask]
|
| 182 |
)
|
| 183 |
else:
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
if self.max_features == 0:
|
| 187 |
raise ValueError(
|
| 188 |
f"max_features (={self.max_features}) must be -1 or larger 0."
|
| 189 |
)
|
| 190 |
elif self.max_features > 0:
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
self._feature_mask = feature_mask
|
| 200 |
self.is_fitted_ = True
|
|
@@ -278,6 +330,7 @@ class FeaturePreprocessor(TransformerMixin, BaseEstimator):
|
|
| 278 |
|
| 279 |
self.feature_selection_config = copy.deepcopy(feature_selection_config)
|
| 280 |
self.use_feat_selec = self.feature_selection_config.pop("use")
|
|
|
|
| 281 |
self.feature_selector = FeatureSelector(**self.feature_selection_config)
|
| 282 |
|
| 283 |
self.max_samples = max_samples
|
|
@@ -330,10 +383,8 @@ class FeaturePreprocessor(TransformerMixin, BaseEstimator):
|
|
| 330 |
|
| 331 |
if self.use_feat_quant:
|
| 332 |
_X = self.quantile_creator.transform(_X)
|
| 333 |
-
|
| 334 |
if self.use_feat_selec:
|
| 335 |
_X = self.feature_selector.transform(_X)
|
| 336 |
-
|
| 337 |
_X = np.concatenate([_X[descr] for descr in self.descriptors], axis=1)
|
| 338 |
_X = self.scaler.transform(_X)
|
| 339 |
|
|
|
|
| 78 |
_X = X.copy()
|
| 79 |
_y = y.copy() if y is not None else None
|
| 80 |
|
| 81 |
+
if self.max_samples > 0 and _X.shape[0] > self.max_samples:
|
| 82 |
resample_idxs = np.random.choice(
|
| 83 |
np.arange(_X.shape[0]), size=(self.max_samples,), replace=True
|
| 84 |
)
|
|
|
|
| 127 |
max_corr=1.0,
|
| 128 |
max_features=-1,
|
| 129 |
feature_keys=None,
|
| 130 |
+
min_var__feature_keys=None,
|
| 131 |
+
max_corr__feature_keys=None,
|
| 132 |
+
max_features__feature_keys=None,
|
| 133 |
+
min_var__independent_keys=False,
|
| 134 |
+
max_corr__independent_keys=False,
|
| 135 |
+
max_features__independent_keys=False,
|
| 136 |
):
|
| 137 |
self.min_var = min_var
|
| 138 |
self.max_corr = max_corr
|
| 139 |
self.max_features = max_features
|
| 140 |
+
|
| 141 |
+
self.min_var__feature_keys = min_var__feature_keys
|
| 142 |
+
self.max_corr__feature_keys = max_corr__feature_keys
|
| 143 |
+
self.max_features__feature_keys = max_features__feature_keys
|
| 144 |
+
|
| 145 |
+
self.min_var__independent_keys = min_var__independent_keys
|
| 146 |
+
self.max_corr__independent_keys = max_corr__independent_keys
|
| 147 |
+
self.max_features__independent_keys = max_features__independent_keys
|
| 148 |
|
| 149 |
super().__init__(feature_keys=feature_keys)
|
| 150 |
|
| 151 |
+
def _get_min_var_mask(self, X: np.ndarray, *args) -> np.ndarray:
|
| 152 |
var_thresh = VarianceThreshold(threshold=self.min_var)
|
| 153 |
return var_thresh.fit(X).get_support() # mask
|
| 154 |
|
| 155 |
+
def _get_max_corr_mask(
|
| 156 |
self, X: np.ndarray, prev_feature_mask: np.ndarray
|
| 157 |
) -> np.ndarray:
|
| 158 |
_prev_feature_mask = prev_feature_mask.copy()
|
|
|
|
| 167 |
_prev_feature_mask[_prev_feature_mask] = to_keep
|
| 168 |
return _prev_feature_mask
|
| 169 |
|
| 170 |
+
def _get_max_features_mask(
|
| 171 |
+
self, X: np.ndarray, prev_feature_mask: np.ndarray
|
| 172 |
+
) -> np.ndarray:
|
| 173 |
+
_prev_feature_mask = prev_feature_mask.copy()
|
| 174 |
+
# select features with at least max_var variation
|
| 175 |
+
feature_vars = np.nanvar(X[:, _prev_feature_mask], axis=0)
|
| 176 |
+
order = np.argsort(feature_vars)[: -(self.max_features + 1) : -1]
|
| 177 |
+
keep_feat_idx = np.arange(len(_prev_feature_mask))[order]
|
| 178 |
+
_prev_feature_mask = np.isin(
|
| 179 |
+
np.arange(len(_prev_feature_mask)), keep_feat_idx, assume_unique=True
|
| 180 |
+
)
|
| 181 |
+
return _prev_feature_mask
|
| 182 |
+
|
| 183 |
+
def apply_filter(self, filter, X, prev_feature_mask):
|
| 184 |
+
mask = prev_feature_mask.copy()
|
| 185 |
+
func = self.__getattribute__(f"_get_{filter}_mask")
|
| 186 |
+
feature_keys = self.__getattribute__(f"{filter}__feature_keys")
|
| 187 |
+
|
| 188 |
+
if self.__getattribute__(f"{filter}__independent_keys"):
|
| 189 |
+
for key in feature_keys:
|
| 190 |
+
key_mask = self._curr_keys == key
|
| 191 |
+
mask[key_mask] = func(X[:, key_mask], mask[key_mask])
|
| 192 |
+
|
| 193 |
+
else:
|
| 194 |
+
feature_key_mask = np.isin(self._curr_keys, feature_keys)
|
| 195 |
+
mask[feature_key_mask] = func(
|
| 196 |
+
X[:, feature_key_mask], mask[feature_key_mask]
|
| 197 |
+
)
|
| 198 |
+
return mask
|
| 199 |
+
|
| 200 |
def fit(self, X: dict[str, np.ndarray]):
|
| 201 |
_X = self.dict_to_array(X)
|
| 202 |
feature_mask = np.ones((_X.shape[1]), dtype=bool)
|
| 203 |
|
| 204 |
# select features with at least min_var variation
|
| 205 |
if self.min_var > 0.0:
|
| 206 |
+
if self.min_var__independent_keys:
|
| 207 |
+
for key in self.min_var__feature_keys:
|
| 208 |
key_mask = self._curr_keys == key
|
| 209 |
+
feature_mask[key_mask] = self._get_min_var_mask(_X[:, key_mask])
|
|
|
|
| 210 |
|
| 211 |
else:
|
| 212 |
+
feature_key_mask = np.isin(self._curr_keys, self.min_var__feature_keys)
|
| 213 |
+
feature_mask[feature_key_mask] = self._get_min_var_mask(
|
| 214 |
+
_X[:, feature_key_mask]
|
| 215 |
+
)
|
| 216 |
|
| 217 |
# select features with at least max_var variation
|
| 218 |
if self.max_corr < 1.0:
|
| 219 |
+
if self.max_corr__independent_keys:
|
| 220 |
+
for key in self.max_corr__feature_keys:
|
| 221 |
key_mask = self._curr_keys == key
|
| 222 |
subset = _X[:, key_mask]
|
| 223 |
+
feature_mask[key_mask] = self._get_max_corr_mask(
|
| 224 |
subset, feature_mask[key_mask]
|
| 225 |
)
|
| 226 |
else:
|
| 227 |
+
feature_key_mask = np.isin(self._curr_keys, self.max_corr__feature_keys)
|
| 228 |
+
feature_mask[feature_key_mask] = self._get_max_corr_mask(
|
| 229 |
+
_X[:, feature_key_mask], feature_mask[feature_key_mask]
|
| 230 |
+
)
|
| 231 |
|
| 232 |
if self.max_features == 0:
|
| 233 |
raise ValueError(
|
| 234 |
f"max_features (={self.max_features}) must be -1 or larger 0."
|
| 235 |
)
|
| 236 |
elif self.max_features > 0:
|
| 237 |
+
if self.max_features__independent_keys:
|
| 238 |
+
for key in self.max_features__feature_keys:
|
| 239 |
+
key_mask = self._curr_keys == key
|
| 240 |
+
feature_mask[key_mask] = self._get_max_features_mask(
|
| 241 |
+
_X[:, key_mask], feature_mask[key_mask]
|
| 242 |
+
)
|
| 243 |
+
else:
|
| 244 |
+
feature_key_mask = np.isin(
|
| 245 |
+
self._curr_keys, self.max_features__feature_keys
|
| 246 |
+
)
|
| 247 |
+
feature_mask[feature_key_mask] = self._get_max_features_mask(
|
| 248 |
+
_X[:, feature_key_mask], feature_mask[feature_key_mask]
|
| 249 |
+
)
|
| 250 |
|
| 251 |
self._feature_mask = feature_mask
|
| 252 |
self.is_fitted_ = True
|
|
|
|
| 330 |
|
| 331 |
self.feature_selection_config = copy.deepcopy(feature_selection_config)
|
| 332 |
self.use_feat_selec = self.feature_selection_config.pop("use")
|
| 333 |
+
self.feature_selection_config["feature_keys"] = descriptors
|
| 334 |
self.feature_selector = FeatureSelector(**self.feature_selection_config)
|
| 335 |
|
| 336 |
self.max_samples = max_samples
|
|
|
|
| 383 |
|
| 384 |
if self.use_feat_quant:
|
| 385 |
_X = self.quantile_creator.transform(_X)
|
|
|
|
| 386 |
if self.use_feat_selec:
|
| 387 |
_X = self.feature_selector.transform(_X)
|
|
|
|
| 388 |
_X = np.concatenate([_X[descr] for descr in self.descriptors], axis=1)
|
| 389 |
_X = self.scaler.transform(_X)
|
| 390 |
|
src/utils.py
CHANGED
|
@@ -32,8 +32,6 @@ TASKS = [
|
|
| 32 |
"SR-p53",
|
| 33 |
]
|
| 34 |
|
| 35 |
-
KNOWN_DESCR = ["ecfps", "tox", "maccs", "rdkit_descrs"]
|
| 36 |
-
|
| 37 |
USED_200_DESCR = [
|
| 38 |
0,
|
| 39 |
1,
|
|
|
|
| 32 |
"SR-p53",
|
| 33 |
]
|
| 34 |
|
|
|
|
|
|
|
| 35 |
USED_200_DESCR = [
|
| 36 |
0,
|
| 37 |
1,
|
train.py
CHANGED
|
@@ -46,10 +46,10 @@ def main(config):
|
|
| 46 |
)
|
| 47 |
|
| 48 |
logger.info(f"Config: {config}")
|
| 49 |
-
model_config_repr = "Model
|
| 50 |
[str(val) for val in config["model_config"].values()]
|
| 51 |
)
|
| 52 |
-
logger.info(f"Model
|
| 53 |
|
| 54 |
# seeding
|
| 55 |
random.seed(config["seed"])
|
|
@@ -111,8 +111,7 @@ def main(config):
|
|
| 111 |
logger.info(log_text)
|
| 112 |
|
| 113 |
if config["ckpt_path"]:
|
| 114 |
-
|
| 115 |
-
joblib.dump(state, config["ckpt_path"])
|
| 116 |
logger.info(f"Save model as: {config['ckpt_path']}")
|
| 117 |
|
| 118 |
if config["preprocessor_path"]:
|
|
|
|
| 46 |
)
|
| 47 |
|
| 48 |
logger.info(f"Config: {config}")
|
| 49 |
+
model_config_repr = "Model config: \n" + "\n".join(
|
| 50 |
[str(val) for val in config["model_config"].values()]
|
| 51 |
)
|
| 52 |
+
logger.info(f"Model config: \n{model_config_repr}")
|
| 53 |
|
| 54 |
# seeding
|
| 55 |
random.seed(config["seed"])
|
|
|
|
| 111 |
logger.info(log_text)
|
| 112 |
|
| 113 |
if config["ckpt_path"]:
|
| 114 |
+
model.save(config["ckpt_path"])
|
|
|
|
| 115 |
logger.info(f"Save model as: {config['ckpt_path']}")
|
| 116 |
|
| 117 |
if config["preprocessor_path"]:
|