import os import gdown import numpy as np from deepface.basemodels import VGGFace from deepface.commons import package_utils, folder_utils from deepface.commons.logger import Logger from deepface.models.Demography import Demography logger = Logger(module="extendedmodels.Gender") # ------------------------------------- # pylint: disable=line-too-long # ------------------------------------- # dependency configurations tf_version = package_utils.get_tf_major_version() if tf_version == 1: from keras.models import Model, Sequential from keras.layers import Convolution2D, Flatten, Activation else: from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Convolution2D, Flatten, Activation # ------------------------------------- # Labels for the genders that can be detected by the model. labels = ["Woman", "Man"] # pylint: disable=too-few-public-methods class GenderClient(Demography): """ Gender model class """ def __init__(self): self.model = load_model() self.model_name = "Gender" def predict(self, img: np.ndarray) -> np.ndarray: return self.model.predict(img, verbose=0)[0, :] def load_model( url="https://github.com/serengil/deepface_models/releases/download/v1.0/gender_model_weights.h5", ) -> Model: """ Construct gender model, download its weights and load Returns: model (Model) """ model = VGGFace.base_model() # -------------------------- classes = 2 base_model_output = Sequential() base_model_output = Convolution2D(classes, (1, 1), name="predictions")(model.layers[-4].output) base_model_output = Flatten()(base_model_output) base_model_output = Activation("softmax")(base_model_output) # -------------------------- gender_model = Model(inputs=model.input, outputs=base_model_output) # -------------------------- # load weights home = folder_utils.get_deepface_home() if os.path.isfile(home + "/weights/gender_model_weights.h5") != True: logger.info("gender_model_weights.h5 will be downloaded...") output = home + "/weights/gender_model_weights.h5" gdown.download(url, output, quiet=False) gender_model.load_weights(home + "/weights/gender_model_weights.h5") return gender_model