Spaces:
Sleeping
Sleeping
File size: 6,038 Bytes
ddda863 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import os
from typing import Any, List
import cv2
import numpy as np
from deepface.models.Detector import Detector, FacialAreaRegion
class OpenCvClient(Detector):
"""
Class to cover common face detection functionalitiy for OpenCv backend
"""
def __init__(self):
self.model = self.build_model()
def build_model(self):
"""
Build opencv's face and eye detector models
Returns:
model (dict): including face_detector and eye_detector keys
"""
detector = {}
detector["face_detector"] = self.__build_cascade("haarcascade")
detector["eye_detector"] = self.__build_cascade("haarcascade_eye")
return detector
def detect_faces(self, img: np.ndarray) -> List[FacialAreaRegion]:
"""
Detect and align face with opencv
Args:
img (np.ndarray): pre-loaded image as numpy array
Returns:
results (List[FacialAreaRegion]): A list of FacialAreaRegion objects
"""
resp = []
detected_face = None
faces = []
try:
# faces = detector["face_detector"].detectMultiScale(img, 1.3, 5)
# note that, by design, opencv's haarcascade scores are >0 but not capped at 1
faces, _, scores = self.model["face_detector"].detectMultiScale3(
img, 1.1, 10, outputRejectLevels=True
)
except:
pass
if len(faces) > 0:
for (x, y, w, h), confidence in zip(faces, scores):
detected_face = img[int(y) : int(y + h), int(x) : int(x + w)]
left_eye, right_eye = self.find_eyes(img=detected_face)
# eyes found in the detected face instead image itself
# detected face's coordinates should be added
if left_eye is not None:
left_eye = (int(x + left_eye[0]), int(y + left_eye[1]))
if right_eye is not None:
right_eye = (int(x + right_eye[0]), int(y + right_eye[1]))
facial_area = FacialAreaRegion(
x=x,
y=y,
w=w,
h=h,
left_eye=left_eye,
right_eye=right_eye,
confidence=(100 - confidence) / 100,
)
resp.append(facial_area)
return resp
def find_eyes(self, img: np.ndarray) -> tuple:
"""
Find the left and right eye coordinates of given image
Args:
img (np.ndarray): given image
Returns:
left and right eye (tuple)
"""
left_eye = None
right_eye = None
# if image has unexpectedly 0 dimension then skip alignment
if img.shape[0] == 0 or img.shape[1] == 0:
return left_eye, right_eye
detected_face_gray = cv2.cvtColor(
img, cv2.COLOR_BGR2GRAY
) # eye detector expects gray scale image
eyes = self.model["eye_detector"].detectMultiScale(detected_face_gray, 1.1, 10)
# ----------------------------------------------------------------
# opencv eye detection module is not strong. it might find more than 2 eyes!
# besides, it returns eyes with different order in each call (issue 435)
# this is an important issue because opencv is the default detector and ssd also uses this
# find the largest 2 eye. Thanks to @thelostpeace
eyes = sorted(eyes, key=lambda v: abs(v[2] * v[3]), reverse=True)
# ----------------------------------------------------------------
if len(eyes) >= 2:
# decide left and right eye
eye_1 = eyes[0]
eye_2 = eyes[1]
if eye_1[0] < eye_2[0]:
right_eye = eye_1
left_eye = eye_2
else:
right_eye = eye_2
left_eye = eye_1
# -----------------------
# find center of eyes
left_eye = (
int(left_eye[0] + (left_eye[2] / 2)),
int(left_eye[1] + (left_eye[3] / 2)),
)
right_eye = (
int(right_eye[0] + (right_eye[2] / 2)),
int(right_eye[1] + (right_eye[3] / 2)),
)
return left_eye, right_eye
def __build_cascade(self, model_name="haarcascade") -> Any:
"""
Build a opencv face&eye detector models
Returns:
model (Any)
"""
opencv_path = self.__get_opencv_path()
if model_name == "haarcascade":
face_detector_path = opencv_path + "haarcascade_frontalface_default.xml"
if os.path.isfile(face_detector_path) != True:
raise ValueError(
"Confirm that opencv is installed on your environment! Expected path ",
face_detector_path,
" violated.",
)
detector = cv2.CascadeClassifier(face_detector_path)
elif model_name == "haarcascade_eye":
eye_detector_path = opencv_path + "haarcascade_eye.xml"
if os.path.isfile(eye_detector_path) != True:
raise ValueError(
"Confirm that opencv is installed on your environment! Expected path ",
eye_detector_path,
" violated.",
)
detector = cv2.CascadeClassifier(eye_detector_path)
else:
raise ValueError(f"unimplemented model_name for build_cascade - {model_name}")
return detector
def __get_opencv_path(self) -> str:
"""
Returns where opencv installed
Returns:
installation_path (str)
"""
opencv_home = cv2.__file__
folders = opencv_home.split(os.path.sep)[0:-1]
path = folders[0]
for folder in folders[1:]:
path = path + "/" + folder
return path + "/data/"
|