""" OpenAI-compatible LLM client adapter. Implements the LLMClient protocol for OpenAI API (and compatible APIs). Includes retry logic, circuit breaker pattern, and streaming support. """ import json import logging import time from collections.abc import AsyncIterator from typing import Any import httpx from tenacity import ( before_sleep_log, retry, retry_if_exception_type, stop_after_attempt, wait_exponential, ) from .base import BaseLLMClient, LLMResponse, LLMToolResponse, ToolCall from .exceptions import ( CircuitBreakerOpenError, LLMAuthenticationError, LLMClientError, LLMConnectionError, LLMContextLengthError, LLMInvalidRequestError, LLMModelNotFoundError, LLMQuotaExceededError, LLMRateLimitError, LLMResponseParseError, LLMServerError, LLMStreamError, LLMTimeoutError, ) logger = logging.getLogger(__name__) class CircuitBreaker: """Simple circuit breaker implementation for resilience.""" def __init__( self, failure_threshold: int = 5, reset_timeout: float = 60.0, half_open_max_calls: int = 1, ): self.failure_threshold = failure_threshold self.reset_timeout = reset_timeout self.half_open_max_calls = half_open_max_calls self.failure_count = 0 self.last_failure_time = 0.0 self.state = "closed" # closed, open, half-open self.half_open_calls = 0 def can_execute(self) -> bool: """Check if request can be executed.""" if self.state == "closed": return True if self.state == "open": # Check if reset timeout has passed if time.time() - self.last_failure_time >= self.reset_timeout: self.state = "half-open" self.half_open_calls = 0 return True return False if self.state == "half-open": return self.half_open_calls < self.half_open_max_calls return False def record_success(self) -> None: """Record successful request.""" if self.state == "half-open": self.state = "closed" self.failure_count = 0 elif self.state == "closed": self.failure_count = 0 def record_failure(self) -> None: """Record failed request.""" self.failure_count += 1 self.last_failure_time = time.time() if self.state == "half-open" or self.failure_count >= self.failure_threshold: self.state = "open" def get_reset_time(self) -> float: """Get time until circuit resets.""" if self.state != "open": return 0.0 elapsed = time.time() - self.last_failure_time return max(0, self.reset_timeout - elapsed) class OpenAIClient(BaseLLMClient): """ OpenAI API client with retry logic and circuit breaker. Features: - Exponential backoff retry for transient errors - Circuit breaker to prevent cascading failures - Streaming support - Structured error handling - Tool/function calling support """ PROVIDER_NAME = "openai" DEFAULT_BASE_URL = "https://api.openai.com/v1" DEFAULT_MODEL = "gpt-4-turbo-preview" def __init__( self, api_key: str | None = None, model: str | None = None, base_url: str | None = None, timeout: float = 60.0, max_retries: int = 3, organization: str | None = None, # Circuit breaker settings circuit_breaker_threshold: int = 5, circuit_breaker_reset: float = 60.0, # Rate limiting rate_limit_per_minute: int | None = None, ): """ Initialize OpenAI client. Args: api_key: OpenAI API key (or set OPENAI_API_KEY env var) model: Model to use (default: gpt-4-turbo-preview) base_url: API base URL (default: https://api.openai.com/v1) timeout: Request timeout in seconds max_retries: Max retry attempts for transient errors organization: Optional organization ID circuit_breaker_threshold: Failures before circuit opens circuit_breaker_reset: Seconds before circuit resets rate_limit_per_minute: Rate limit for requests per minute (None to disable) """ import os api_key = api_key or os.environ.get("OPENAI_API_KEY") if not api_key: raise LLMAuthenticationError(self.PROVIDER_NAME, "API key not provided and OPENAI_API_KEY not set") super().__init__( api_key=api_key, model=model or self.DEFAULT_MODEL, base_url=base_url or self.DEFAULT_BASE_URL, timeout=timeout, max_retries=max_retries, rate_limit_per_minute=rate_limit_per_minute, ) self.organization = organization self.circuit_breaker = CircuitBreaker( failure_threshold=circuit_breaker_threshold, reset_timeout=circuit_breaker_reset, ) # Initialize async HTTP client self._client: httpx.AsyncClient | None = None async def _get_client(self) -> httpx.AsyncClient: """Get or create the HTTP client.""" if self._client is None or self._client.is_closed: headers = { "Authorization": f"Bearer {self.api_key}", "Content-Type": "application/json", } if self.organization: headers["OpenAI-Organization"] = self.organization self._client = httpx.AsyncClient( base_url=self.base_url, headers=headers, timeout=httpx.Timeout(self.timeout), ) return self._client def _handle_error_response(self, response: httpx.Response) -> None: """Convert HTTP error responses to appropriate exceptions.""" status_code = response.status_code try: error_data = response.json() error_message = error_data.get("error", {}).get("message", response.text) except Exception: error_message = response.text if status_code == 401: raise LLMAuthenticationError(self.PROVIDER_NAME, error_message) elif status_code == 429: retry_after = response.headers.get("Retry-After") retry_after_float = float(retry_after) if retry_after else None raise LLMRateLimitError(self.PROVIDER_NAME, retry_after=retry_after_float, message=error_message) elif status_code == 402: raise LLMQuotaExceededError(self.PROVIDER_NAME, error_message) elif status_code == 404: raise LLMModelNotFoundError(self.PROVIDER_NAME, self.model) elif status_code == 400: if "context_length" in error_message.lower(): raise LLMContextLengthError(self.PROVIDER_NAME) raise LLMInvalidRequestError(self.PROVIDER_NAME, error_message) elif status_code >= 500: raise LLMServerError(self.PROVIDER_NAME, status_code, error_message) else: raise LLMClientError(error_message, self.PROVIDER_NAME, status_code=status_code) def _make_retry_decorator(self): """Create retry decorator with exponential backoff.""" return retry( stop=stop_after_attempt(self.max_retries), wait=wait_exponential(multiplier=1, min=1, max=60), retry=retry_if_exception_type((LLMRateLimitError, LLMServerError, LLMConnectionError)), before_sleep=before_sleep_log(logger, logging.WARNING), reraise=True, ) async def generate( self, *, messages: list[dict] | None = None, prompt: str | None = None, temperature: float = 0.7, max_tokens: int | None = None, tools: list[dict] | None = None, stream: bool = False, stop: list[str] | None = None, **kwargs: Any, ) -> LLMResponse | AsyncIterator[str]: """ Generate a response from OpenAI. Args: messages: Chat messages in OpenAI format prompt: Simple string prompt temperature: Sampling temperature (0.0 to 2.0) max_tokens: Maximum tokens to generate tools: Tool definitions for function calling stream: If True, returns AsyncIterator stop: Stop sequences **kwargs: Additional OpenAI parameters (top_p, presence_penalty, etc.) Returns: LLMResponse or AsyncIterator[str] for streaming """ # Apply rate limiting before proceeding await self._apply_rate_limit() # Check circuit breaker if not self.circuit_breaker.can_execute(): raise CircuitBreakerOpenError( self.PROVIDER_NAME, self.circuit_breaker.failure_count, self.circuit_breaker.get_reset_time(), ) if stream: return self._generate_stream( messages=messages, prompt=prompt, temperature=temperature, max_tokens=max_tokens, tools=tools, stop=stop, **kwargs, ) else: return await self._generate_non_stream( messages=messages, prompt=prompt, temperature=temperature, max_tokens=max_tokens, tools=tools, stop=stop, **kwargs, ) async def _generate_non_stream( self, *, messages: list[dict] | None = None, prompt: str | None = None, temperature: float = 0.7, max_tokens: int | None = None, tools: list[dict] | None = None, stop: list[str] | None = None, **kwargs: Any, ) -> LLMResponse: """Non-streaming generation with retry logic.""" @self._make_retry_decorator() async def _request(): client = await self._get_client() # Build request payload payload = { "model": self.model, "messages": self._build_messages(messages, prompt), "temperature": temperature, } if max_tokens is not None: payload["max_tokens"] = max_tokens if stop: payload["stop"] = stop if tools: payload["tools"] = tools payload["tool_choice"] = kwargs.pop("tool_choice", "auto") # Add any additional kwargs payload.update(kwargs) try: response = await client.post("/chat/completions", json=payload) except httpx.TimeoutException: raise LLMTimeoutError(self.PROVIDER_NAME, self.timeout) except httpx.ConnectError: raise LLMConnectionError(self.PROVIDER_NAME, self.base_url) if response.status_code != 200: self._handle_error_response(response) return response try: response = await _request() self.circuit_breaker.record_success() except Exception: self.circuit_breaker.record_failure() raise # Parse response try: data = response.json() choice = data["choices"][0] message = choice["message"] usage = data.get("usage", {}) finish_reason = choice.get("finish_reason", "stop") # Check for tool calls if "tool_calls" in message: tool_calls = [ ToolCall( id=tc["id"], name=tc["function"]["name"], arguments=json.loads(tc["function"]["arguments"]), ) for tc in message["tool_calls"] ] llm_response = LLMToolResponse( text=message.get("content", ""), usage=usage, model=data.get("model", self.model), raw_response=data, finish_reason=finish_reason, tool_calls=tool_calls, ) else: llm_response = LLMResponse( text=message.get("content", ""), usage=usage, model=data.get("model", self.model), raw_response=data, finish_reason=finish_reason, ) self._update_stats(llm_response) return llm_response except (KeyError, json.JSONDecodeError) as e: raise LLMResponseParseError(self.PROVIDER_NAME, response.text) from e async def _generate_stream( self, *, messages: list[dict] | None = None, prompt: str | None = None, temperature: float = 0.7, max_tokens: int | None = None, tools: list[dict] | None = None, stop: list[str] | None = None, **kwargs: Any, ) -> AsyncIterator[str]: """Streaming generation.""" client = await self._get_client() # Build request payload payload = { "model": self.model, "messages": self._build_messages(messages, prompt), "temperature": temperature, "stream": True, } if max_tokens is not None: payload["max_tokens"] = max_tokens if stop: payload["stop"] = stop # Note: tools with streaming have limited support if tools: payload["tools"] = tools payload.update(kwargs) async def stream_generator(): try: async with client.stream("POST", "/chat/completions", json=payload) as response: if response.status_code != 200: # Read the full response for error handling await response.aread() self._handle_error_response(response) async for line in response.aiter_lines(): if line.startswith("data: "): data_str = line[6:] if data_str.strip() == "[DONE]": break try: data = json.loads(data_str) delta = data["choices"][0].get("delta", {}) content = delta.get("content", "") if content: yield content except (json.JSONDecodeError, KeyError): continue self.circuit_breaker.record_success() except httpx.TimeoutException: self.circuit_breaker.record_failure() raise LLMTimeoutError(self.PROVIDER_NAME, self.timeout) except httpx.ConnectError: self.circuit_breaker.record_failure() raise LLMConnectionError(self.PROVIDER_NAME, self.base_url) except Exception as e: self.circuit_breaker.record_failure() if isinstance(e, LLMClientError): raise raise LLMStreamError(self.PROVIDER_NAME, str(e)) from e return stream_generator() async def close(self) -> None: """Close the HTTP client.""" if self._client and not self._client.is_closed: await self._client.aclose() self._client = None