Spaces:
Running
Running
File size: 31,583 Bytes
00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 2b6939e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 0fb1929 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 2b6939e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 0fb1929 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 0fb1929 00e4b7d 0fb1929 00e4b7d 0fb1929 00e4b7d 0fb1929 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 366083e 00e4b7d 2b6939e 00e4b7d 2b6939e 00e4b7d 2b6939e 00e4b7d 2b6939e 00e4b7d 2b6939e 00e4b7d 2b6939e 00e4b7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 |
import gradio as gr
from datetime import datetime
from typing import Any, Dict, Iterable, List, Optional, Tuple
from collections import Counter
import json
import os
import html as html_lib
import base64
from pathlib import Path
from huggingface_hub import HfApi, InferenceClient
import requests
def _created_year(obj):
if hasattr(obj, "created_at"):
dt = getattr(obj, "created_at")
return dt.year
def _year_from_iso(value: Any) -> Optional[int]:
if not value or not isinstance(value, str):
return None
try:
# e.g. 2025-12-12T18:40:13.000Z
dt = datetime.fromisoformat(value.replace("Z", "+00:00"))
return dt.year
except Exception:
return None
_ASSET_CACHE: Dict[str, str] = {}
def _asset_data_uri(filename: str) -> str:
"""
Returns a data URI (base64) for a local asset in this repo.
Cached in-memory to avoid re-reading files every render.
"""
if filename in _ASSET_CACHE:
return _ASSET_CACHE[filename]
path = Path(__file__).resolve().parent / filename
try:
raw = path.read_bytes()
b64 = base64.b64encode(raw).decode("ascii")
ext = path.suffix.lower()
mime = "image/png"
if ext == ".gif":
mime = "image/gif"
elif ext in (".jpg", ".jpeg"):
mime = "image/jpeg"
elif ext == ".webp":
mime = "image/webp"
uri = f"data:{mime};base64,{b64}"
_ASSET_CACHE[filename] = uri
return uri
except Exception:
# If missing, return empty string to avoid breaking HTML
return ""
def _http_get_json(url: str, *, token: Optional[str] = None, params: Optional[Dict[str, Any]] = None) -> Any:
headers: Dict[str, str] = {}
if token:
headers["Authorization"] = f"Bearer {token}"
r = requests.get(url, headers=headers, params=params, timeout=25)
r.raise_for_status()
return r.json()
def fetch_likes_left_2025(username: str, token: Optional[str] = None) -> int:
"""
Count likes the user left in 2025 via /api/users/{username}/likes.
Endpoint returns a list with `createdAt` descending.
"""
url = f"https://huggingface.co/api/users/{username}/likes"
try:
data = _http_get_json(url, token=token)
except Exception:
return 0
if not isinstance(data, list):
return 0
total = 0
for item in data:
if not isinstance(item, dict):
continue
yr = _year_from_iso(item.get("createdAt"))
if yr is None:
continue
if yr < 2025:
break
if yr == 2025:
total += 1
return total
def _repo_id(obj: Any) -> str:
if isinstance(obj, dict):
return obj.get("id") or obj.get("modelId") or obj.get("repoId") or "N/A"
return (
getattr(obj, "id", None)
or getattr(obj, "modelId", None)
or getattr(obj, "repoId", None)
or getattr(obj, "repo_id", None)
or "N/A"
)
def _repo_likes(obj: Any) -> int:
return int(getattr(obj, "likes", 0) or 0)
def _repo_tags(obj: Any) -> List[str]:
tags = getattr(obj, "tags", None) or []
return [t for t in tags if isinstance(t, str)]
def _repo_pipeline_tag(obj: Any) -> Optional[str]:
val = getattr(obj, "pipeline_tag", None)
return val
def _repo_library_name(obj: Any) -> Optional[str]:
val = getattr(obj, "library_name", None)
if isinstance(val, str) and val.strip():
return val.strip()
val = getattr(obj, "libraryName", None)
if isinstance(val, str) and val.strip():
return val.strip()
return None
def _collect_2025_sorted_desc(items: Iterable[Any]) -> List[Any]:
"""
We rely on API-side sorting (createdAt desc) + early-stop once we hit < 2025.
This avoids pulling a user's entire history.
"""
out: List[Any] = []
for item in items:
yr = _created_year(item)
if yr is None:
continue
if yr < 2025:
break
if yr == 2025:
out.append(item)
return out
def fetch_user_data_2025(username: str, token: Optional[str] = None) -> Dict[str, List[Any]]:
"""Fetch user's models/datasets/spaces created in 2025 (API-side sort + paginated early-stop)."""
api = HfApi(token=token)
data: Dict[str, List[Any]] = {"models": [], "datasets": [], "spaces": []}
try:
data["models"] = _collect_2025_sorted_desc(
api.list_models(author=username, full=True, sort="createdAt", direction=-1)
)
except Exception:
data["models"] = []
try:
data["datasets"] = _collect_2025_sorted_desc(
api.list_datasets(author=username, full=True, sort="createdAt", direction=-1)
)
except Exception:
data["datasets"] = []
# list_spaces full=True isn't supported in some versions; fall back if needed
try:
data["spaces"] = _collect_2025_sorted_desc(
api.list_spaces(author=username, full=True, sort="createdAt", direction=-1)
)
except Exception:
try:
data["spaces"] = _collect_2025_sorted_desc(
api.list_spaces(author=username, sort="createdAt", direction=-1)
)
except Exception:
data["spaces"] = []
return data
def _normalize_task_tag(tag: str) -> Optional[str]:
t = (tag or "").strip()
if not t:
return None
for prefix in ("task_categories:", "task_ids:", "pipeline_tag:"):
if t.startswith(prefix):
t = t[len(prefix):].strip()
t = t.strip().lower()
return t or None
def _suggested_nickname_for_task(task: Optional[str]) -> Optional[str]:
if not task:
return None
t = task.strip().lower()
mapping = {
"text-generation": "LLM Whisperer π£οΈ",
"image-text-to-text": "VLM Nerd π€",
"text-to-speech": "Fullβtime Yapper π£οΈ",
"automatic-speech-recognition": "Subtitle Goblin π§",
"text-to-image": "Diffusion Gremlin π¨",
"image-classification": "Pixel Judge ποΈ",
"token-classification": "NERd Lord π€",
"text-classification": "Opinion Machine π§ ",
"translation": "Language Juggler πΊοΈ",
"summarization": "TL;DR Dealer βοΈ",
"image-to-text": "Caption Connoisseur πΌοΈ",
"zero-shot-classification": "Label Wizard πͺ",
}
return mapping.get(t)
def infer_task_and_modality(models: List[Any], datasets: List[Any], spaces: List[Any]) -> Tuple[Optional[str], Counter]:
"""
Returns: (most_common_task, task_counter)
- Task is primarily inferred from model `pipeline_tag`, then from task-ish tags on all artifacts.
"""
model_tasks: List[str] = []
for m in models:
pt = _repo_pipeline_tag(m)
if pt:
model_tasks.append(pt.strip().lower())
tag_tasks: List[str] = []
for obj in (models + datasets + spaces):
for tag in _repo_tags(obj):
nt = _normalize_task_tag(tag)
if nt:
tag_tasks.append(nt)
counts = Counter(model_tasks if model_tasks else tag_tasks)
top_task = counts.most_common(1)[0][0] if counts else None
return top_task, counts
def infer_most_common_library(models: List[Any]) -> Optional[str]:
libs: List[str] = []
for m in models:
ln = _repo_library_name(m)
if ln:
libs.append(ln)
if not libs:
return None
return Counter(libs).most_common(1)[0][0]
def _k2_model_candidates() -> List[str]:
"""
Kimi K2 repo IDs can vary; allow override via env and try a small list.
"""
env_model = (os.getenv("KIMI_K2_MODEL") or "moonshotai/Kimi-K2-Instruct").strip()
candidates = [env_model]
# de-dupe while preserving order
seen = set()
out = []
for c in candidates:
if c and c not in seen:
out.append(c)
seen.add(c)
return out
def _esc(value: Any) -> str:
if value is None:
return ""
return html_lib.escape(str(value), quote=True)
def _profile_username(profile: Any) -> Optional[str]:
if profile is None:
return None
for key in ("username", "preferred_username", "name", "user", "handle"):
val = getattr(profile, key, None)
if isinstance(val, str) and val.strip():
return val.strip().lstrip("@")
data = getattr(profile, "data", None)
if isinstance(data, dict):
for key in ("username", "preferred_username", "name"):
val = data.get(key)
if isinstance(val, str) and val.strip():
return val.strip().lstrip("@")
for container in ("profile", "user"):
blob = data.get(container)
if isinstance(blob, dict):
val = blob.get("username") or blob.get("preferred_username") or blob.get("name")
if isinstance(val, str) and val.strip():
return val.strip().lstrip("@")
if isinstance(profile, dict):
val = profile.get("username") or profile.get("preferred_username") or profile.get("name")
if isinstance(val, str) and val.strip():
return val.strip().lstrip("@")
return None
def _profile_token(profile: Any) -> Optional[str]:
"""
Gradio's OAuth payload varies by version.
We try common attribute names and `.data` shapes.
"""
if profile is None:
return None
for key in ("token", "access_token", "hf_token", "oauth_token", "oauth_access_token"):
val = getattr(profile, key, None)
if isinstance(val, str) and val.strip():
return val.strip()
data = getattr(profile, "data", None)
if isinstance(data, dict):
for key in ("token", "access_token", "hf_token", "oauth_token", "oauth_access_token"):
val = data.get(key)
if isinstance(val, str) and val.strip():
return val.strip()
# Common nested objects
oauth_info = data.get("oauth_info") or data.get("oauth") or data.get("oauthInfo") or {}
if isinstance(oauth_info, dict):
val = oauth_info.get("access_token") or oauth_info.get("token")
if isinstance(val, str) and val.strip():
return val.strip()
if isinstance(profile, dict):
val = profile.get("token") or profile.get("access_token")
if isinstance(val, str) and val.strip():
return val.strip()
return None
def generate_roast_and_nickname_with_k2(
*,
username: str,
total_artifacts_2025: int,
models_2025: int,
datasets_2025: int,
spaces_2025: int,
top_task: Optional[str],
) -> Tuple[Optional[str], Optional[str]]:
"""
Calls Kimi K2 via Hugging Face Inference Providers (via huggingface_hub InferenceClient).
Returns (nickname, roast). If call fails, returns (None, None).
"""
token = (os.getenv("HF_TOKEN") or "").strip()
if not token:
return None, None
vibe = top_task or "mysterious vibes"
above_below = "above" if total_artifacts_2025 > 20 else "below"
suggested = _suggested_nickname_for_task(top_task)
system = (
"You are a witty, playful roast-comedian. Keep it fun, not cruel. "
"No slurs, no hate, no harassment. Avoid profanity. Keep it short."
)
user = f"""
Create TWO things about this Hugging Face user, based on their 2025 activity stats.
User: @{username}
Artifacts created in 2025: {total_artifacts_2025} (models={models_2025}, datasets={datasets_2025}, spaces={spaces_2025}) which is {above_below} 20.
Top task (pipeline_tag): {top_task or "unknown"}
Nickname guidance (examples you SHOULD follow when applicable):
- text-generation -> LLM Whisperer π£οΈ
- image-text-to-text -> VLM Nerd π€
- text-to-speech -> Fullβtime Yapper π£οΈ
If top task is known and you have a strong matching idea, pick a nickname like the examples. {f'If unsure, you may use this suggested nickname: {suggested}' if suggested else ''}
Roast should reference the task and whether they are above/below 20 artifacts.
Most common vibe: {vibe}
Return ONLY valid JSON with exactly these keys:
{{
"nickname": "...", // short, funny, can include 1 emoji
"roast": "..." // 1-2 sentences max, playful, no bullying
}}
""".strip()
client = InferenceClient(model="moonshotai/Kimi-K2-Instruct", token=token)
resp = client.chat.completions.create(
model="moonshotai/Kimi-K2-Instruct",
messages=[
{"role": "system", "content": system},
{"role": "user", "content": user},
],
max_tokens=180,
temperature=0.8,
)
content = (resp.choices[0].message.content or "").strip()
payload = json.loads(content)
nickname = payload.get("nickname")
roast = payload.get("roast")
nickname_out = nickname.strip() if isinstance(nickname, str) else None
roast_out = roast.strip() if isinstance(roast, str) else None
return nickname_out, roast_out
def generate_wrapped_report(profile: gr.OAuthProfile) -> str:
"""Generate the HF Wrapped 2025 report"""
username = _profile_username(profile) or "unknown"
token = _profile_token(profile)
# Fetch 2025 data (API-side sort + early stop)
user_data_2025 = fetch_user_data_2025(username, token)
models_2025 = user_data_2025["models"]
datasets_2025 = user_data_2025["datasets"]
spaces_2025 = user_data_2025["spaces"]
most_liked_model = max(models_2025, key=_repo_likes) if models_2025 else None
most_liked_dataset = max(datasets_2025, key=_repo_likes) if datasets_2025 else None
most_liked_space = max(spaces_2025, key=_repo_likes) if spaces_2025 else None
total_likes = sum(_repo_likes(x) for x in (models_2025 + datasets_2025 + spaces_2025))
top_task, _task_counts = infer_task_and_modality(models_2025, datasets_2025, spaces_2025)
top_library = infer_most_common_library(models_2025)
total_artifacts_2025 = len(models_2025) + len(datasets_2025) + len(spaces_2025)
nickname, roast = generate_roast_and_nickname_with_k2(
username=username,
total_artifacts_2025=total_artifacts_2025,
models_2025=len(models_2025),
datasets_2025=len(datasets_2025),
spaces_2025=len(spaces_2025),
top_task=top_task,
)
# New 2025 engagement stats
likes_left_2025 = fetch_likes_left_2025(username, token)
# Inline icons (local assets)
like_icon = _asset_data_uri("like_logo.png")
likes_received_icon = _asset_data_uri("likes_received.png")
model_icon = _asset_data_uri("model_logo.png")
dataset_icon = _asset_data_uri("dataset_logo.png")
spaces_icon = _asset_data_uri("spaces_logo.png")
vibe_icon = _asset_data_uri("vibe_logo.gif")
# Create HTML report
html = f"""
<!DOCTYPE html>
<html>
<head>
<style>
@import url('https://fonts.googleapis.com/css2?family=Poppins:wght@300;400;600;700;800&display=swap');
:root {{
/* Keep the report readable even if the HF host page is in dark mode */
color-scheme: light;
}}
body {{
font-family: 'Poppins', sans-serif;
background: linear-gradient(135deg, #FFF4D6 0%, #FFE6B8 50%, #FFF9E6 100%);
margin: 0;
padding: 20px;
min-height: 100vh;
color: #374151;
}}
.container {{
max-width: 800px;
margin: 0 auto;
background: rgba(255, 255, 255, 0.95);
border-radius: 26px;
padding: 40px;
box-shadow: 0 20px 60px rgba(0, 0, 0, 0.3);
animation: fadeIn 0.8s ease-in;
}}
@keyframes fadeIn {{
from {{ opacity: 0; transform: translateY(20px); }}
to {{ opacity: 1; transform: translateY(0); }}
}}
.header {{
text-align: center;
margin-bottom: 40px;
}}
.header h1 {{
font-size: 3em;
background: linear-gradient(135deg, #FF9D00 0%, #FFD21E 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin: 0;
font-weight: 800;
animation: slideDown 0.6s ease-out;
}}
@keyframes slideDown {{
from {{ transform: translateY(-30px); opacity: 0; }}
to {{ transform: translateY(0); opacity: 1; }}
}}
.username {{
font-size: 1.5em;
color: #8a4b00 !important;
margin-top: 10px;
font-weight: 600;
}}
.nickname {{
font-size: 1.1em;
color: #111 !important;
margin-top: 8px;
font-weight: 700;
background: #ffffff !important;
display: inline-block;
padding: 6px 12px;
border-radius: 999px;
border: 1px solid rgba(245, 87, 108, 0.25);
box-shadow: 0 8px 18px rgba(0, 0, 0, 0.08);
}}
/* Removed the animated year badge ("beating 2025") */
.stats-grid {{
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 20px;
margin: 30px 0;
}}
.stat-card {{
/* Solid pastel yellow (no gradient) */
background: rgba(255, 210, 30, 0.55);
color: #1f2937;
padding: 25px;
border-radius: 18px;
text-align: center;
box-shadow: 0 10px 25px rgba(255, 210, 30, 0.22);
border: 1px solid rgba(17, 17, 17, 0.06);
transition: transform 0.3s ease, box-shadow 0.3s ease;
animation: popIn 0.5s ease-out backwards;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
gap: 10px;
min-height: 170px;
}}
/* Force fixed readable colors (HF dark mode can override otherwise) */
.stat-card, .stat-card * {{
color: #111 !important;
}}
.stat-number {{
color: #111 !important;
}}
.stat-label {{
color: #111 !important;
}}
.stat-card:nth-child(1) {{ animation-delay: 0.1s; }}
.stat-card:nth-child(2) {{ animation-delay: 0.2s; }}
.stat-card:nth-child(3) {{ animation-delay: 0.3s; }}
@keyframes popIn {{
from {{ transform: scale(0.8); opacity: 0; }}
to {{ transform: scale(1); opacity: 1; }}
}}
.stat-card:hover {{
transform: translateY(-5px) scale(1.05);
box-shadow: 0 15px 35px rgba(255, 210, 30, 0.30);
}}
.stat-number {{
font-size: clamp(2.3rem, 3.6vw, 3.2rem);
font-weight: 800;
margin: 0;
line-height: 1.05;
}}
.stat-label {{
font-size: clamp(0.95rem, 1.2vw, 1.05rem);
font-weight: 600;
/* Avoid locale-sensitive uppercasing (e.g. "Likes" -> "LΔ°KES" in Turkish locale) */
text-transform: none;
letter-spacing: 0.06em;
display: inline-flex;
align-items: center;
justify-content: center;
gap: 10px;
color: #374151;
}}
.stat-icon {{
width: clamp(54px, 6vw, 76px);
height: clamp(54px, 6vw, 76px);
object-fit: contain;
filter: drop-shadow(0 2px 6px rgba(0,0,0,0.15));
}}
.stat-top {{
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
gap: 10px;
}}
.likes-grid .stat-card {{
min-height: 190px;
}}
.likes-grid {{
display: grid;
grid-template-columns: repeat(2, minmax(240px, 1fr));
gap: 20px;
margin: 30px 0;
}}
.section-icon {{
width: 34px;
height: 34px;
object-fit: contain;
vertical-align: middle;
margin-right: 8px;
filter: drop-shadow(0 2px 6px rgba(0,0,0,0.12));
}}
@media (max-width: 640px) {{
.likes-grid {{
grid-template-columns: 1fr;
}}
}}
.section {{
margin: 40px 0;
padding: 25px;
background: #ffffff !important;
border-radius: 18px;
animation: slideIn 0.6s ease-out;
color: #111 !important;
border: 1px solid rgba(17, 17, 17, 0.08);
box-shadow: 0 12px 30px rgba(0, 0, 0, 0.10);
border-top: 6px solid rgba(255, 157, 0, 0.75);
}}
@keyframes slideIn {{
from {{ transform: translateX(-30px); opacity: 0; }}
to {{ transform: translateX(0); opacity: 1; }}
}}
.section h2 {{
color: #8a4b00 !important;
font-size: 1.8em;
margin-top: 0;
font-weight: 700;
display: flex;
align-items: center;
gap: 10px;
}}
.trophy {{
font-size: 1.5em;
}}
.item {{
background: #ffffff !important;
padding: 20px;
margin: 15px 0;
border-radius: 13px;
box-shadow: 0 5px 15px rgba(0, 0, 0, 0.1);
transition: transform 0.2s ease;
border: 1px solid rgba(17, 17, 17, 0.08);
}}
.item:hover {{
transform: translateX(10px);
}}
.item-name {{
font-weight: 600;
font-size: 1.2em;
color: #111 !important;
margin-bottom: 5px;
}}
.item-likes {{
color: #d92d20 !important;
font-weight: 600;
font-size: 1.1em;
}}
.item-sub {{
color: #1f2937 !important;
font-weight: 600;
font-size: 1.05em;
}}
.emoji {{
font-size: 1.5em;
margin-right: 10px;
}}
.footer {{
text-align: center;
margin-top: 40px;
color: #111 !important;
font-weight: 600;
background: #ffffff !important;
border: 1px solid rgba(17, 17, 17, 0.08);
border-radius: 14px;
padding: 16px 18px;
box-shadow: 0 10px 24px rgba(0, 0, 0, 0.08);
}}
.footer p {{
margin: 8px 0;
color: #111 !important;
opacity: 1 !important;
font-size: 1.05em;
line-height: 1.35;
}}
.no-data {{
text-align: center;
color: #111 !important;
font-style: italic;
padding: 20px;
}}
.roast {{
font-size: 1.15em;
line-height: 1.5;
color: #111 !important;
background: #fff0f3 !important;
border-left: 6px solid #f5576c;
padding: 18px 18px;
border-radius: 12px;
margin-top: 10px;
border: 1px solid rgba(245, 87, 108, 0.25);
font-family: inherit !important;
}}
/* Ensure roast never switches to monospace because of inline code blocks */
.roast, .roast * {{
font-family: 'Poppins', sans-serif !important;
}}
.roast code, .roast pre {{
font-family: 'Poppins', sans-serif !important;
}}
</style>
</head>
<body>
<div class="container">
<div class="header">
<h1>Your 2025 Hugging Face Wrapped</h1>
<div class="username">@{username}</div>
</div>
<div class="section">
<h2><img class="section-icon" src="{vibe_icon}" alt="Vibe" /> Your Signature Vibe</h2>
<div class="item">
{f'<div class="item-name">You are a {_esc(nickname)}</div>' if nickname else ''}
{f'<div class="item-name">You nailed this task: {_esc(top_task)}</div>' if top_task else ''}
<div class="item-name">You shipped {total_artifacts_2025} artifacts this year!</div>
{f'<div class="item-name">You loved {_esc(top_library)} library the most π</div>' if top_library else ''}
</div>
{f'<div class="roast" style="margin-top: 14px;">{_esc(roast)}</div>' if roast else '<div class="no-data" style="margin-top: 14px;">Couldnβt generate a roast (missing token or Kimi K2 not reachable).</div>'}
</div>
<div class="stats-grid">
<div class="stat-card">
<div class="stat-top">
<img class="stat-icon" src="{model_icon}" alt="Models" />
<div class="stat-number">{len(models_2025)}</div>
</div>
<div class="stat-label">Models</div>
</div>
<div class="stat-card">
<div class="stat-top">
<img class="stat-icon" src="{dataset_icon}" alt="Datasets" />
<div class="stat-number">{len(datasets_2025)}</div>
</div>
<div class="stat-label">Datasets</div>
</div>
<div class="stat-card">
<div class="stat-top">
<img class="stat-icon" src="{spaces_icon}" alt="Spaces" />
<div class="stat-number">{len(spaces_2025)}</div>
</div>
<div class="stat-label">Spaces</div>
</div>
</div>
<div class="likes-grid">
<div class="stat-card">
<div class="stat-top">
<img class="stat-icon" src="{like_icon}" alt="Likes given" />
<div class="stat-number">{likes_left_2025}</div>
</div>
<div class="stat-label">Likes Given</div>
</div>
<div class="stat-card">
<div class="stat-top">
<img class="stat-icon" src="{likes_received_icon}" alt="Likes received" />
<div class="stat-number">{total_likes}</div>
</div>
<div class="stat-label">Likes Received</div>
</div>
</div>
<div class="section">
<h2>Most Liked Model</h2>
{f'''
<div class="item">
<div class="item-name"><span class="emoji">π€</span>{_repo_id(most_liked_model)}</div>
<div class="item-likes">β€οΈ {_repo_likes(most_liked_model)} likes</div>
</div>
''' if most_liked_model else '<div class="no-data">No models yet</div>'}
</div>
<div class="section">
<h2>Most Liked Dataset</h2>
{f'''
<div class="item">
<div class="item-name"><span class="emoji">π</span>{_repo_id(most_liked_dataset)}</div>
<div class="item-likes">β€οΈ {_repo_likes(most_liked_dataset)} likes</div>
</div>
''' if most_liked_dataset else '<div class="no-data">No datasets yet</div>'}
</div>
<div class="section">
<h2>Most Liked Space</h2>
{f'''
<div class="item">
<div class="item-name"><span class="emoji">π</span>{_repo_id(most_liked_space)}</div>
<div class="item-likes">β€οΈ {_repo_likes(most_liked_space)} likes</div>
</div>
''' if most_liked_space else '<div class="no-data">No spaces yet</div>'}
</div>
<div class="footer">
<p>π Thank you for being part of the Hugging Face community! π</p>
<p>Keep building amazing things in 2026!</p>
<p>Built with Inference Providers with π</p>
</div>
</div>
</body>
</html>
"""
return html
def show_login_message():
"""Show message for non-logged-in users"""
return """
<div style="text-align: center; padding: 50px; font-family: 'Poppins', sans-serif;">
<h1 style="color: #8a4b00; font-size: 3em;">π Welcome to HF Wrapped! π</h1>
<p style="font-size: 1.5em; color: #374151;">
Please log in with your Hugging Face account to see your personalized report!
</p>
<p style="font-size: 1.2em; color: #4b5563;">
Click the "Sign in with Hugging Face" button above π
</p>
</div>
"""
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Soft(), css="""
.gradio-container {
background: linear-gradient(135deg, #FFF4D6 0%, #FFE6B8 50%, #FFF9E6 100%);
}
/* Force readable hero text even when HF host page is in dark mode */
.hf-hero, .hf-hero * {
color: #111 !important;
}
""") as demo:
gr.HTML("""
<div class="hf-hero" style="text-align: center; padding: 20px;">
<h1 style="font-size: 3em; margin: 0;">π HF Wrapped 2025 π</h1>
<p style="font-size: 1.2em; margin: 8px 0 0 0;">Discover your Hugging Face journey this year!</p>
</div>
""")
with gr.Row():
with gr.Column():
login_button = gr.LoginButton()
output = gr.HTML(value=show_login_message())
def _render(profile_obj: Optional[gr.OAuthProfile] = None):
# In Gradio versions that support OAuth, `profile_obj` is injected after login.
return generate_wrapped_report(profile_obj) if profile_obj is not None else show_login_message()
# On load show the login message (and in some Gradio versions, this also receives the injected profile)
demo.load(fn=_render, inputs=None, outputs=output)
# After login completes, clicking the login button will trigger a rerender.
# Older Gradio treats LoginButton as a button (click event), not a value component (change event).
if hasattr(login_button, "click"):
login_button.click(fn=_render, inputs=None, outputs=output)
if __name__ == "__main__":
demo.launch() |