Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +165 -0
- build_vector_store.py +31 -0
- evaluate.py +120 -0
app.py
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""Main application for MANIT RAG Chatbot"""
|
| 3 |
+
from typing import List, Dict
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import numpy as np
|
| 6 |
+
import faiss
|
| 7 |
+
import pickle
|
| 8 |
+
import os
|
| 9 |
+
import time
|
| 10 |
+
from sentence_transformers import SentenceTransformer
|
| 11 |
+
from src.retrieval.semantic_retriever import SemanticRetriever
|
| 12 |
+
from src.generation.response_generator import ResponseGenerator
|
| 13 |
+
from config.settings import config
|
| 14 |
+
|
| 15 |
+
class MANITChatbot:
|
| 16 |
+
"""Main chatbot class"""
|
| 17 |
+
|
| 18 |
+
def __init__(self):
|
| 19 |
+
# Load vector store
|
| 20 |
+
self.embeddings = np.load(os.path.join(config.VECTOR_STORE_PATH, "embeddings.npy"))
|
| 21 |
+
self.faiss_index = faiss.read_index(os.path.join(config.VECTOR_STORE_PATH, "faiss_index.bin"))
|
| 22 |
+
|
| 23 |
+
with open(os.path.join(config.VECTOR_STORE_PATH, "chunks.pkl"), "rb") as f:
|
| 24 |
+
self.chunks = pickle.load(f)
|
| 25 |
+
|
| 26 |
+
with open(os.path.join(config.VECTOR_STORE_PATH, "bm25.pkl"), "rb") as f:
|
| 27 |
+
self.bm25 = pickle.load(f)
|
| 28 |
+
|
| 29 |
+
with open(os.path.join(config.VECTOR_STORE_PATH, "relationships.pkl"), "rb") as f:
|
| 30 |
+
self.relationships = pickle.load(f)
|
| 31 |
+
|
| 32 |
+
# Initialize models
|
| 33 |
+
self.embedding_model = SentenceTransformer(config.EMBEDDING_MODEL, device='cpu')
|
| 34 |
+
|
| 35 |
+
# Initialize components
|
| 36 |
+
self.retriever = SemanticRetriever(
|
| 37 |
+
embedding_model=self.embedding_model,
|
| 38 |
+
faiss_index=self.faiss_index,
|
| 39 |
+
chunks=self.chunks,
|
| 40 |
+
bm25_index=self.bm25,
|
| 41 |
+
relationships=self.relationships
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
self.generator = ResponseGenerator()
|
| 45 |
+
print("MANIT Chatbot initialized successfully!")
|
| 46 |
+
|
| 47 |
+
def process_query(self, query: str) -> str:
|
| 48 |
+
"""Process user query through full RAG pipeline"""
|
| 49 |
+
if not query.strip():
|
| 50 |
+
return "Please enter a question about MANIT Bhopal."
|
| 51 |
+
|
| 52 |
+
start_time = time.time()
|
| 53 |
+
|
| 54 |
+
try:
|
| 55 |
+
print(f"Processing query: {query}")
|
| 56 |
+
|
| 57 |
+
# Retrieve relevant documents
|
| 58 |
+
retrieval_start = time.time()
|
| 59 |
+
retrieved_chunks = self.retriever.retrieve(query)
|
| 60 |
+
retrieval_time = time.time() - retrieval_start
|
| 61 |
+
|
| 62 |
+
if not retrieved_chunks:
|
| 63 |
+
return "I couldn't find relevant information about this topic. Please try another question."
|
| 64 |
+
|
| 65 |
+
print(f"Retrieved {len(retrieved_chunks)} chunks in {retrieval_time:.2f}s")
|
| 66 |
+
|
| 67 |
+
# Format context
|
| 68 |
+
context = self._format_context(retrieved_chunks)
|
| 69 |
+
|
| 70 |
+
# Check if web search is needed
|
| 71 |
+
web_context = ""
|
| 72 |
+
if self.generator.needs_web_search(query, context):
|
| 73 |
+
web_results = self.generator.web_search(query)
|
| 74 |
+
if web_results:
|
| 75 |
+
web_context = "\n\n".join(web_results)
|
| 76 |
+
|
| 77 |
+
# Generate response
|
| 78 |
+
generation_start = time.time()
|
| 79 |
+
response = self.generator.generate_response(query, context, web_context)
|
| 80 |
+
generation_time = time.time() - generation_start
|
| 81 |
+
|
| 82 |
+
total_time = time.time() - start_time
|
| 83 |
+
print(f"Total processing time: {total_time:.2f}s (Retrieval: {retrieval_time:.2f}s, Generation: {generation_time:.2f}s)")
|
| 84 |
+
|
| 85 |
+
return response
|
| 86 |
+
|
| 87 |
+
except Exception as e:
|
| 88 |
+
print(f"Error processing query: {e}")
|
| 89 |
+
return "I encountered an error processing your question. Please try again."
|
| 90 |
+
|
| 91 |
+
def _format_context(self, chunks: List[Dict]) -> str:
|
| 92 |
+
"""Format context for the prompt"""
|
| 93 |
+
context_parts = []
|
| 94 |
+
|
| 95 |
+
for chunk in chunks:
|
| 96 |
+
source = chunk['metadata']['source']
|
| 97 |
+
content = chunk['content']
|
| 98 |
+
context_parts.append(f"Source: {source}\nContent: {content}")
|
| 99 |
+
|
| 100 |
+
return "\n\n---\n\n".join(context_parts)
|
| 101 |
+
|
| 102 |
+
def create_interface():
|
| 103 |
+
"""Create Gradio interface"""
|
| 104 |
+
chatbot = MANITChatbot()
|
| 105 |
+
|
| 106 |
+
def chat_fn(message, history):
|
| 107 |
+
"""Process chat message and return both chatbot history and cleared message"""
|
| 108 |
+
response = chatbot.process_query(message)
|
| 109 |
+
|
| 110 |
+
# Append to history - format as [user_message, bot_response]
|
| 111 |
+
history.append([message, response])
|
| 112 |
+
|
| 113 |
+
# Return updated history AND empty string to clear input
|
| 114 |
+
return history, ""
|
| 115 |
+
|
| 116 |
+
with gr.Blocks(
|
| 117 |
+
title="MANIT Bhopal Expert Assistant",
|
| 118 |
+
theme=gr.themes.Soft(),
|
| 119 |
+
css=""".gradio-container {max-width: 900px; margin: 0 auto;}"""
|
| 120 |
+
) as demo:
|
| 121 |
+
|
| 122 |
+
gr.Markdown("""
|
| 123 |
+
# 🎓 MANIT Bhopal Expert Assistant
|
| 124 |
+
*Powered by Advanced RAG Technology*
|
| 125 |
+
|
| 126 |
+
Ask questions about programs, admissions, faculty, facilities, research, and more.
|
| 127 |
+
""")
|
| 128 |
+
|
| 129 |
+
chatbot_ui = gr.Chatbot(
|
| 130 |
+
height=500,
|
| 131 |
+
show_label=False,
|
| 132 |
+
avatar_images=[None, "👨🎓"],
|
| 133 |
+
show_copy_button=True
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
with gr.Row():
|
| 137 |
+
msg = gr.Textbox(
|
| 138 |
+
label="Your Question",
|
| 139 |
+
placeholder="Ask about MANIT Bhopal...",
|
| 140 |
+
scale=8,
|
| 141 |
+
lines=2
|
| 142 |
+
)
|
| 143 |
+
submit = gr.Button("Send", scale=1, variant="primary")
|
| 144 |
+
|
| 145 |
+
gr.Examples(
|
| 146 |
+
examples=[
|
| 147 |
+
"Who is the current director of MANIT?",
|
| 148 |
+
"What programs are offered in Computer Applications?",
|
| 149 |
+
"What is the admission cancellation process?",
|
| 150 |
+
"Tell me about the faculty in Mechanical Engineering",
|
| 151 |
+
"What research facilities are available at MANIT?"
|
| 152 |
+
],
|
| 153 |
+
inputs=msg,
|
| 154 |
+
label="Example Questions"
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# Set up event handlers - return both chatbot and textbox components
|
| 158 |
+
msg.submit(chat_fn, [msg, chatbot_ui], [chatbot_ui, msg])
|
| 159 |
+
submit.click(chat_fn, [msg, chatbot_ui], [chatbot_ui, msg])
|
| 160 |
+
|
| 161 |
+
return demo
|
| 162 |
+
|
| 163 |
+
if __name__ == "__main__":
|
| 164 |
+
demo = create_interface()
|
| 165 |
+
demo.launch()
|
build_vector_store.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""Build the vector store from raw text files"""
|
| 3 |
+
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
from src.preprocessing.advanced_processor import AdvancedTextProcessor
|
| 7 |
+
from config.settings import config
|
| 8 |
+
|
| 9 |
+
def main():
|
| 10 |
+
print("Building MANIT RAG Vector Store...")
|
| 11 |
+
|
| 12 |
+
# Check if raw texts exist
|
| 13 |
+
if not os.path.exists(config.RAW_TEXT_PATH):
|
| 14 |
+
print(f"Error: Raw text path {config.RAW_TEXT_PATH} does not exist")
|
| 15 |
+
sys.exit(1)
|
| 16 |
+
|
| 17 |
+
# Process texts and build vector store
|
| 18 |
+
processor = AdvancedTextProcessor()
|
| 19 |
+
chunks = processor.process_directory()
|
| 20 |
+
|
| 21 |
+
if not chunks:
|
| 22 |
+
print("No chunks were processed. Check your input files.")
|
| 23 |
+
sys.exit(1)
|
| 24 |
+
|
| 25 |
+
print(f"Processed {len(chunks)} chunks from text files")
|
| 26 |
+
processor.build_vector_store(chunks)
|
| 27 |
+
|
| 28 |
+
print("Vector store built successfully!")
|
| 29 |
+
|
| 30 |
+
if __name__ == "__main__":
|
| 31 |
+
main()
|
evaluate.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""Evaluation script for MANIT RAG system"""
|
| 3 |
+
|
| 4 |
+
import time
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from tabulate import tabulate
|
| 7 |
+
from app import MANITChatbot
|
| 8 |
+
|
| 9 |
+
def evaluate_performance():
|
| 10 |
+
"""Evaluate the RAG system with a set of test questions"""
|
| 11 |
+
# Initialize the chatbot
|
| 12 |
+
print("Initializing MANIT Chatbot for evaluation...")
|
| 13 |
+
chatbot = MANITChatbot()
|
| 14 |
+
|
| 15 |
+
# Test questions covering different types of queries
|
| 16 |
+
test_questions = [
|
| 17 |
+
"Who is the director of MANIT Bhopal?",
|
| 18 |
+
"Who is the caretake of hostel 9?",
|
| 19 |
+
"What are the prices of guest house at manit",
|
| 20 |
+
"What are the dispensary timings and who are the staff present",
|
| 21 |
+
"What research facilities are available at MANIT",
|
| 22 |
+
"What is the contact number for dispensary",
|
| 23 |
+
"Who are the associate deans at MANIT",
|
| 24 |
+
"Tell me about training and placement cell at MANIT",
|
| 25 |
+
"What is the syllabus of aritficial intelligence department",
|
| 26 |
+
"What are the vision and mission of MANIT?",
|
| 27 |
+
"Who is the faculty advisor of student street play society?",
|
| 28 |
+
"On what research areas computer science department is working?",
|
| 29 |
+
"what is the name of person who registered the design for a paver block",
|
| 30 |
+
"What are the objective for intellectual property rights cell at manit",
|
| 31 |
+
"Tell me about mentorship program at MANIT",
|
| 32 |
+
"What are the recent events at manti"
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
results = []
|
| 36 |
+
|
| 37 |
+
print(f"\nEvaluating {len(test_questions)} questions...")
|
| 38 |
+
print("=" * 80)
|
| 39 |
+
|
| 40 |
+
for i, question in enumerate(test_questions, 1):
|
| 41 |
+
print(f"\n{i}/{len(test_questions)}: {question}")
|
| 42 |
+
|
| 43 |
+
# Time the response
|
| 44 |
+
start_time = time.time()
|
| 45 |
+
response = chatbot.process_query(question)
|
| 46 |
+
end_time = time.time()
|
| 47 |
+
|
| 48 |
+
response_time = end_time - start_time
|
| 49 |
+
|
| 50 |
+
# Analyze response quality
|
| 51 |
+
word_count = len(response.split())
|
| 52 |
+
has_thinking_tokens = "◁think▷" in response or "◁/think▷" in response
|
| 53 |
+
is_short = word_count < 20
|
| 54 |
+
is_too_long = word_count > 200
|
| 55 |
+
|
| 56 |
+
results.append({
|
| 57 |
+
"Question": question,
|
| 58 |
+
"Response Time (s)": round(response_time, 2),
|
| 59 |
+
"Word Count": word_count,
|
| 60 |
+
"Has Thinking Tokens": has_thinking_tokens,
|
| 61 |
+
"Too Short": is_short,
|
| 62 |
+
"Too Long": is_too_long,
|
| 63 |
+
"Response": response
|
| 64 |
+
})
|
| 65 |
+
|
| 66 |
+
print(f"Time: {response_time:.2f}s, Words: {word_count}")
|
| 67 |
+
if has_thinking_tokens:
|
| 68 |
+
print("⚠️ Warning: Response contains thinking tokens")
|
| 69 |
+
|
| 70 |
+
# Create summary statistics
|
| 71 |
+
df = pd.DataFrame(results)
|
| 72 |
+
avg_time = df["Response Time (s)"].mean()
|
| 73 |
+
avg_words = df["Word Count"].mean()
|
| 74 |
+
thinking_tokens_count = df["Has Thinking Tokens"].sum()
|
| 75 |
+
short_count = df["Too Short"].sum()
|
| 76 |
+
long_count = df["Too Long"].sum()
|
| 77 |
+
|
| 78 |
+
# Print summary
|
| 79 |
+
print("\n" + "=" * 80)
|
| 80 |
+
print("EVALUATION SUMMARY")
|
| 81 |
+
print("=" * 80)
|
| 82 |
+
print(f"Average Response Time: {avg_time:.2f}s")
|
| 83 |
+
print(f"Average Response Length: {avg_words:.0f} words")
|
| 84 |
+
print(f"Questions with Thinking Tokens: {thinking_tokens_count}/{len(test_questions)}")
|
| 85 |
+
print(f"Too Short Responses: {short_count}/{len(test_questions)}")
|
| 86 |
+
print(f"Too Long Responses: {long_count}/{len(test_questions)}")
|
| 87 |
+
|
| 88 |
+
# Print detailed results
|
| 89 |
+
print("\nDETAILED RESULTS:")
|
| 90 |
+
print("=" * 80)
|
| 91 |
+
|
| 92 |
+
summary_df = df[["Question", "Response Time (s)", "Word Count", "Has Thinking Tokens"]]
|
| 93 |
+
print(tabulate(summary_df, headers="keys", tablefmt="grid", showindex=False))
|
| 94 |
+
|
| 95 |
+
# Print a few sample responses
|
| 96 |
+
print("\nSAMPLE RESPONSES:")
|
| 97 |
+
print("=" * 80)
|
| 98 |
+
|
| 99 |
+
for i, result in enumerate(results[:3]): # Show first 3 responses
|
| 100 |
+
print(f"\n{i+1}. {result['Question']}")
|
| 101 |
+
print(f"Time: {result['Response Time (s)']}s")
|
| 102 |
+
print("Response:")
|
| 103 |
+
print(result['Response'][:300] + "..." if len(result['Response']) > 300 else result['Response'])
|
| 104 |
+
print("-" * 60)
|
| 105 |
+
|
| 106 |
+
# Save full results to CSV
|
| 107 |
+
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
| 108 |
+
filename = f"evaluation_results_{timestamp}.csv"
|
| 109 |
+
df.to_csv(filename, index=False)
|
| 110 |
+
print(f"\nFull results saved to: {filename}")
|
| 111 |
+
|
| 112 |
+
return results
|
| 113 |
+
|
| 114 |
+
if __name__ == "__main__":
|
| 115 |
+
# Set performance mode via environment variable
|
| 116 |
+
import os
|
| 117 |
+
performance_mode = os.getenv("PERFORMANCE_MODE", "balanced")
|
| 118 |
+
print(f"Running evaluation in {performance_mode} mode")
|
| 119 |
+
|
| 120 |
+
evaluate_performance()
|