Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,24 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import tempfile
|
| 3 |
from fpdf import FPDF
|
| 4 |
-
|
| 5 |
import gradio as gr
|
| 6 |
from transformers import pipeline
|
| 7 |
|
| 8 |
# -----------------------------
|
| 9 |
-
#
|
| 10 |
# -----------------------------
|
| 11 |
-
#
|
| 12 |
-
# On systems with GPU change device to 0 (cuda) for speed.
|
| 13 |
generator = pipeline(
|
| 14 |
"text2text-generation",
|
| 15 |
model="google/flan-t5-xl",
|
| 16 |
-
# device=0, # uncomment if
|
| 17 |
)
|
| 18 |
|
| 19 |
# -----------------------------
|
|
@@ -25,115 +30,122 @@ brand_memory = {
|
|
| 25 |
}
|
| 26 |
|
| 27 |
# -----------------------------
|
| 28 |
-
#
|
| 29 |
# -----------------------------
|
| 30 |
-
def
|
| 31 |
-
"""
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
Uses a DOTALL regex and anchors looking for the next header line that
|
| 37 |
-
starts with a capitalized word and colon.
|
| 38 |
-
"""
|
| 39 |
-
# Ensure we match the exact header plus colon, allow optional whitespace
|
| 40 |
-
pattern = rf"^{re.escape(section_name)}:\s*(.*?)(?=^\w[\w\d \-']+:\s*$|$\Z)"
|
| 41 |
-
match = re.search(pattern, text, flags=re.MULTILINE | re.DOTALL | re.IGNORECASE)
|
| 42 |
-
if match:
|
| 43 |
-
return match.group(1).strip()
|
| 44 |
-
return "Not found."
|
| 45 |
|
| 46 |
# -----------------------------
|
| 47 |
-
#
|
| 48 |
# -----------------------------
|
| 49 |
-
|
| 50 |
-
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
- <Tagline 2>
|
| 67 |
"""
|
| 68 |
|
| 69 |
-
def
|
| 70 |
"""
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
strictly following the OUTPUT FORMAT. (Helps Flan-T5-XL follow strict formatting.)
|
| 74 |
"""
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
# quick check: does it contain the main headers?
|
| 78 |
-
required_headers = ["Creative Direction:", "Emotional Tone:", "Ad Script:", "Poster Prompt:", "Taglines:"]
|
| 79 |
-
if all(h.lower() in full_response.lower() for h in required_headers):
|
| 80 |
-
return full_response
|
| 81 |
-
|
| 82 |
-
if retry_if_bad:
|
| 83 |
-
# concise reformat request appended to previous model output
|
| 84 |
-
reformat_prompt = (
|
| 85 |
-
full_response
|
| 86 |
-
+ "\n\nThe above answer is good, but you MUST re-output it following the exact OUTPUT FORMAT below. "
|
| 87 |
-
+ BASE_OUTPUT_FORMAT
|
| 88 |
-
+ "\n\nReformat now and include the same content but strictly follow the headings and colons."
|
| 89 |
-
)
|
| 90 |
-
full_response = generator(reformat_prompt, max_new_tokens=500, do_sample=False, temperature=0.0)[0]["generated_text"]
|
| 91 |
-
return full_response
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
Goal: {goal}
|
| 106 |
-
Tone: {
|
| 107 |
-
|
| 108 |
Region: {region}
|
| 109 |
|
| 110 |
-
|
|
|
|
|
|
|
| 111 |
|
| 112 |
-
|
| 113 |
"""
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
| 137 |
md = f"""
|
| 138 |
# π¨ **Enterprise Creative Campaign Output**
|
| 139 |
---
|
|
@@ -156,27 +168,24 @@ Write full content under each heading only (do NOT include extra commentary).
|
|
| 156 |
{taglines}
|
| 157 |
---
|
| 158 |
"""
|
| 159 |
-
|
| 160 |
-
md += "\n\n**Parsing debug:** The model output didn't strictly match expected headings for at least one section. See raw output below.\n\n```\n" + llm_output[:4000] + ("\n... (truncated)\n" if len(llm_output) > 4000 else "\n") + "```\n"
|
| 161 |
-
|
| 162 |
return md, creative_direction, emotional_tone, ad_script, poster_prompt, taglines
|
| 163 |
|
| 164 |
# -----------------------------
|
| 165 |
-
# Poster prompt
|
| 166 |
# -----------------------------
|
| 167 |
-
def generate_poster_prompt(brand, mood, theme, audience):
|
| 168 |
-
prompt = f"""
|
| 169 |
-
|
| 170 |
Brand: {brand}
|
| 171 |
Mood: {mood}
|
| 172 |
Theme: {theme}
|
| 173 |
Audience: {audience}
|
|
|
|
| 174 |
|
| 175 |
-
OUTPUT
|
| 176 |
-
Describe lighting, color palette, environment, camera angle, people (appearance, clothing, poses), props, depth of field, mood, and recommended typography placement. Keep it compact but highly descriptive.
|
| 177 |
"""
|
| 178 |
-
|
| 179 |
-
return result
|
| 180 |
|
| 181 |
# -----------------------------
|
| 182 |
# Update Brand Memory
|
|
@@ -186,22 +195,18 @@ def update_brand_memory(new_tone, new_style):
|
|
| 186 |
brand_memory["tone"] = new_tone
|
| 187 |
if new_style:
|
| 188 |
brand_memory["style"] = new_style
|
| 189 |
-
# Return status + memory snapshot
|
| 190 |
return "β
Brand memory updated successfully!", str(brand_memory)
|
| 191 |
|
| 192 |
# -----------------------------
|
| 193 |
-
# Export
|
| 194 |
# -----------------------------
|
| 195 |
def export_pdf(text):
|
| 196 |
pdf = FPDF()
|
| 197 |
pdf.set_auto_page_break(auto=True, margin=15)
|
| 198 |
pdf.add_page()
|
| 199 |
pdf.set_font("Arial", size=12)
|
| 200 |
-
|
| 201 |
-
# split by lines and write using multi_cell to handle wrapping
|
| 202 |
for line in text.split("\n"):
|
| 203 |
pdf.multi_cell(0, 7, line)
|
| 204 |
-
|
| 205 |
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
| 206 |
pdf.output(tmp.name)
|
| 207 |
return tmp.name
|
|
@@ -213,7 +218,7 @@ with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
|
| 213 |
gr.HTML("""
|
| 214 |
<div style='text-align:center; padding:20px'>
|
| 215 |
<h1 style='font-size:40px;'>π Enterprise Creative Campaign Suite</h1>
|
| 216 |
-
<p style='font-size:18px; color:#ddd;'>
|
| 217 |
</div>
|
| 218 |
""")
|
| 219 |
|
|
@@ -223,16 +228,20 @@ with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
|
| 223 |
with gr.Row():
|
| 224 |
brand_name = gr.Textbox(label="Brand Name", value="Chessy")
|
| 225 |
product_type = gr.Textbox(label="Product Type", value="Premium Chess Set")
|
| 226 |
-
|
| 227 |
goal = gr.Textbox(label="Campaign Goal", value="Increase D2C sales by 30% in 3 months")
|
| 228 |
tone = gr.Textbox(label="Tone / Voice", value="Warm, aspirational, cinematic")
|
| 229 |
audience = gr.Textbox(label="Target Audience", value="Young professionals, 25-40, India")
|
| 230 |
region = gr.Textbox(label="Region", value="India")
|
| 231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
run_btn = gr.Button("π Generate Full Campaign", variant="primary")
|
| 233 |
-
output_md = gr.Markdown("Your campaign will appear hereβ¦")
|
| 234 |
|
| 235 |
-
# Hidden
|
| 236 |
cd = gr.Textbox(visible=False)
|
| 237 |
et = gr.Textbox(visible=False)
|
| 238 |
ad = gr.Textbox(visible=False)
|
|
@@ -241,7 +250,7 @@ with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
|
| 241 |
|
| 242 |
run_btn.click(
|
| 243 |
fn=generate_campaign,
|
| 244 |
-
inputs=[brand_name, product_type, goal, tone, audience, region],
|
| 245 |
outputs=[output_md, cd, et, ad, pp, tg]
|
| 246 |
)
|
| 247 |
|
|
@@ -251,12 +260,15 @@ with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
|
| 251 |
mood = gr.Textbox(label="Mood & Emotion", value="Epic, reflective")
|
| 252 |
themep = gr.Textbox(label="Theme", value="Master vs Newcomer")
|
| 253 |
audp = gr.Textbox(label="Audience", value="Players & collectors")
|
|
|
|
|
|
|
|
|
|
| 254 |
gen_poster_btn = gr.Button("π¨ Generate Poster Prompt")
|
| 255 |
poster_out = gr.Textbox(label="Poster Prompt", lines=8)
|
| 256 |
|
| 257 |
gen_poster_btn.click(
|
| 258 |
generate_poster_prompt,
|
| 259 |
-
[brandp, mood, themep, audp],
|
| 260 |
poster_out
|
| 261 |
)
|
| 262 |
|
|
@@ -275,7 +287,7 @@ with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
|
| 275 |
gr.Markdown("### Export your full campaign as PDF")
|
| 276 |
export_btn = gr.Button("π Export Campaign as PDF")
|
| 277 |
export_file = gr.File()
|
| 278 |
-
|
| 279 |
export_btn.click(export_pdf, inputs=output_md, outputs=export_file)
|
| 280 |
|
| 281 |
demo.launch()
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Enterprise Creative Campaign Suite - Separate-section generation (FLAN-T5-XL)
|
| 3 |
+
Author: Assistant (adapted for your needs)
|
| 4 |
+
Notes:
|
| 5 |
+
- This script calls the HF pipeline 5 times (one per section).
|
| 6 |
+
- If you have GPU, set device=0 inside the pipeline(...) call for speed.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
import tempfile
|
| 10 |
from fpdf import FPDF
|
|
|
|
| 11 |
import gradio as gr
|
| 12 |
from transformers import pipeline
|
| 13 |
|
| 14 |
# -----------------------------
|
| 15 |
+
# MODEL SETUP - FLAN-T5-XL
|
| 16 |
# -----------------------------
|
| 17 |
+
# If you have GPU, set device=0
|
|
|
|
| 18 |
generator = pipeline(
|
| 19 |
"text2text-generation",
|
| 20 |
model="google/flan-t5-xl",
|
| 21 |
+
# device=0, # uncomment if you want to use the first CUDA GPU
|
| 22 |
)
|
| 23 |
|
| 24 |
# -----------------------------
|
|
|
|
| 30 |
}
|
| 31 |
|
| 32 |
# -----------------------------
|
| 33 |
+
# Low-level wrapper to call model
|
| 34 |
# -----------------------------
|
| 35 |
+
def gen_one(prompt: str, max_new_tokens: int = 220, temperature: float = 0.8, do_sample: bool = True):
|
| 36 |
+
"""Call the HF pipeline and return generated text (stripped)."""
|
| 37 |
+
out = generator(prompt, max_new_tokens=max_new_tokens, do_sample=do_sample, temperature=temperature)
|
| 38 |
+
# Pipeline returns a list of dicts; take first
|
| 39 |
+
return out[0]["generated_text"].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# -----------------------------
|
| 42 |
+
# Per-section prompt builders
|
| 43 |
# -----------------------------
|
| 44 |
+
def build_creative_direction_prompt(brand, product, goal, tone, audience, region):
|
| 45 |
+
return f"""You are an expert creative strategist. Write a **3β5 line Creative Direction** for a premium brand campaign.
|
| 46 |
|
| 47 |
+
Brand: {brand}
|
| 48 |
+
Product: {product}
|
| 49 |
+
Goal: {goal}
|
| 50 |
+
Tone: {tone}. Brand historically sounds like: {brand_memory.get('tone')}
|
| 51 |
+
Audience: {audience}
|
| 52 |
+
Region: {region}
|
| 53 |
|
| 54 |
+
Constraints:
|
| 55 |
+
- Output ONLY the creative direction text (3-5 lines).
|
| 56 |
+
- No headings, no extra commentary.
|
| 57 |
+
- Make it cinematic, emotionally resonant, and brand-forward.
|
| 58 |
+
"""
|
| 59 |
|
| 60 |
+
def build_emotional_tone_prompt(brand, product, goal, tone, audience, region):
|
| 61 |
+
return f"""Write the Emotional Tone of the campaign in 4-6 lines.
|
| 62 |
|
| 63 |
+
Brand: {brand}
|
| 64 |
+
Product: {product}
|
| 65 |
+
Goal: {goal}
|
| 66 |
+
Tone: {tone}. Brand memory: {brand_memory.get('tone')}
|
| 67 |
+
Audience: {audience}
|
| 68 |
+
Region: {region}
|
| 69 |
|
| 70 |
+
Explain: emotional personality, core feelings to evoke, voice, and how it should make the audience feel.
|
| 71 |
+
Output ONLY the emotional tone paragraph(s). No headings.
|
|
|
|
| 72 |
"""
|
| 73 |
|
| 74 |
+
def build_ad_script_prompt(brand, product, goal, tone, audience, region, script_style="Hybrid"):
|
| 75 |
"""
|
| 76 |
+
Hybrid = cinematic storytelling + marketing clarity.
|
| 77 |
+
We'll ask for labeled sections inside the script: Intro, Body, CTA.
|
|
|
|
| 78 |
"""
|
| 79 |
+
return f"""Write a cinematic + marketing hybrid Ad Script for a 30-60 second film ad. Include labeled sections: "Intro:", "Body:", "CTA:".
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
+
Brand: {brand}
|
| 82 |
+
Product: {product}
|
| 83 |
+
Goal: {goal}
|
| 84 |
+
Tone: {tone}. Brand memory: {brand_memory.get('tone')}
|
| 85 |
+
Audience: {audience}
|
| 86 |
+
Region: {region}
|
| 87 |
+
|
| 88 |
+
Style: Hybrid (mix cinematic imagery and short marketing beats). Keep each labeled section concise (Intro: 2-4 lines, Body: 6-10 lines, CTA: 1-2 lines). Use vivid sensory details and short punch lines for the CTA.
|
| 89 |
+
|
| 90 |
+
Output only the script text with the labeled sections (Intro:, Body:, CTA:). No extra headings or commentary.
|
| 91 |
+
"""
|
| 92 |
+
|
| 93 |
+
def build_poster_prompt_prompt(brand, product, goal, tone, audience, region):
|
| 94 |
+
return f"""Generate a single-paragraph Stable Diffusion / SDXL poster prompt for the campaign.
|
| 95 |
+
|
| 96 |
+
Brand: {brand}
|
| 97 |
+
Product: {product}
|
| 98 |
+
Goal: {goal}
|
| 99 |
+
Tone: {tone}. Brand memory: {brand_memory.get('tone')}
|
| 100 |
+
Audience: {audience}
|
| 101 |
+
Region: {region}
|
| 102 |
+
|
| 103 |
+
Include: lighting, color palette, environment, camera angle, characters (appearance, clothing, pose), props, mood, depth of field suggestions, and where to place typography.
|
| 104 |
+
Output only one descriptive paragraph (no headings).
|
| 105 |
+
"""
|
| 106 |
+
|
| 107 |
+
def build_taglines_prompt(brand, product, goal, tone, audience, region):
|
| 108 |
+
return f"""Write **two** powerful taglines for the campaign. Keep them short, memorable, and emotionally resonant.
|
| 109 |
+
|
| 110 |
+
Brand: {brand}
|
| 111 |
+
Product: {product}
|
| 112 |
Goal: {goal}
|
| 113 |
+
Tone: {tone}. Brand memory: {brand_memory.get('tone')}
|
| 114 |
+
Audience: {audience}
|
| 115 |
Region: {region}
|
| 116 |
|
| 117 |
+
Format (exact):
|
| 118 |
+
- <Tagline 1>
|
| 119 |
+
- <Tagline 2>
|
| 120 |
|
| 121 |
+
Output only the two lines prefixed with a dash as shown.
|
| 122 |
"""
|
| 123 |
+
|
| 124 |
+
# -----------------------------
|
| 125 |
+
# Combined generator that calls the model for each section
|
| 126 |
+
# -----------------------------
|
| 127 |
+
def generate_campaign(brand_name, product_type, goal, tone, audience, region, temperature=0.8, do_sample=True):
|
| 128 |
+
"""
|
| 129 |
+
Calls the model separately for each section and returns assembled markdown plus raw sections.
|
| 130 |
+
"""
|
| 131 |
+
# Ensure brand memory hint appended to tone
|
| 132 |
+
tone_hint = f"{tone}. The brand historically sounds like: {brand_memory.get('tone')}"
|
| 133 |
+
|
| 134 |
+
# Build prompts
|
| 135 |
+
p_cd = build_creative_direction_prompt(brand_name, product_type, goal, tone_hint, audience, region)
|
| 136 |
+
p_et = build_emotional_tone_prompt(brand_name, product_type, goal, tone_hint, audience, region)
|
| 137 |
+
p_ad = build_ad_script_prompt(brand_name, product_type, goal, tone_hint, audience, region, script_style="Hybrid")
|
| 138 |
+
p_pp = build_poster_prompt_prompt(brand_name, product_type, goal, tone_hint, audience, region)
|
| 139 |
+
p_tg = build_taglines_prompt(brand_name, product_type, goal, tone_hint, audience, region)
|
| 140 |
+
|
| 141 |
+
# Generate each section (separate calls)
|
| 142 |
+
creative_direction = gen_one(p_cd, max_new_tokens=200, temperature=temperature, do_sample=do_sample)
|
| 143 |
+
emotional_tone = gen_one(p_et, max_new_tokens=180, temperature=temperature, do_sample=do_sample)
|
| 144 |
+
ad_script = gen_one(p_ad, max_new_tokens=420, temperature=temperature, do_sample=do_sample)
|
| 145 |
+
poster_prompt = gen_one(p_pp, max_new_tokens=200, temperature=temperature, do_sample=do_sample)
|
| 146 |
+
taglines = gen_one(p_tg, max_new_tokens=80, temperature=temperature, do_sample=do_sample)
|
| 147 |
+
|
| 148 |
+
# Assemble markdown
|
| 149 |
md = f"""
|
| 150 |
# π¨ **Enterprise Creative Campaign Output**
|
| 151 |
---
|
|
|
|
| 168 |
{taglines}
|
| 169 |
---
|
| 170 |
"""
|
| 171 |
+
# Return markdown plus each piece so UI can store/use them
|
|
|
|
|
|
|
| 172 |
return md, creative_direction, emotional_tone, ad_script, poster_prompt, taglines
|
| 173 |
|
| 174 |
# -----------------------------
|
| 175 |
+
# Poster prompt single-call helper (tab 2)
|
| 176 |
# -----------------------------
|
| 177 |
+
def generate_poster_prompt(brand, mood, theme, audience, temperature=0.8, do_sample=True):
|
| 178 |
+
prompt = f"""Create a cinematic AI poster prompt for Stable Diffusion / SDXL.
|
| 179 |
+
|
| 180 |
Brand: {brand}
|
| 181 |
Mood: {mood}
|
| 182 |
Theme: {theme}
|
| 183 |
Audience: {audience}
|
| 184 |
+
Brand memory: {brand_memory.get('tone')}
|
| 185 |
|
| 186 |
+
OUTPUT: Single paragraph describing lighting, color palette, environment, camera angle, people (appearance, clothing, poses), props, depth of field, mood, and typography placement.
|
|
|
|
| 187 |
"""
|
| 188 |
+
return gen_one(prompt, max_new_tokens=240, temperature=temperature, do_sample=do_sample)
|
|
|
|
| 189 |
|
| 190 |
# -----------------------------
|
| 191 |
# Update Brand Memory
|
|
|
|
| 195 |
brand_memory["tone"] = new_tone
|
| 196 |
if new_style:
|
| 197 |
brand_memory["style"] = new_style
|
|
|
|
| 198 |
return "β
Brand memory updated successfully!", str(brand_memory)
|
| 199 |
|
| 200 |
# -----------------------------
|
| 201 |
+
# Export to PDF
|
| 202 |
# -----------------------------
|
| 203 |
def export_pdf(text):
|
| 204 |
pdf = FPDF()
|
| 205 |
pdf.set_auto_page_break(auto=True, margin=15)
|
| 206 |
pdf.add_page()
|
| 207 |
pdf.set_font("Arial", size=12)
|
|
|
|
|
|
|
| 208 |
for line in text.split("\n"):
|
| 209 |
pdf.multi_cell(0, 7, line)
|
|
|
|
| 210 |
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
| 211 |
pdf.output(tmp.name)
|
| 212 |
return tmp.name
|
|
|
|
| 218 |
gr.HTML("""
|
| 219 |
<div style='text-align:center; padding:20px'>
|
| 220 |
<h1 style='font-size:40px;'>π Enterprise Creative Campaign Suite</h1>
|
| 221 |
+
<p style='font-size:18px; color:#ddd;'>FLAN-T5-XL β’ Sectioned generation (Hybrid script)</p>
|
| 222 |
</div>
|
| 223 |
""")
|
| 224 |
|
|
|
|
| 228 |
with gr.Row():
|
| 229 |
brand_name = gr.Textbox(label="Brand Name", value="Chessy")
|
| 230 |
product_type = gr.Textbox(label="Product Type", value="Premium Chess Set")
|
|
|
|
| 231 |
goal = gr.Textbox(label="Campaign Goal", value="Increase D2C sales by 30% in 3 months")
|
| 232 |
tone = gr.Textbox(label="Tone / Voice", value="Warm, aspirational, cinematic")
|
| 233 |
audience = gr.Textbox(label="Target Audience", value="Young professionals, 25-40, India")
|
| 234 |
region = gr.Textbox(label="Region", value="India")
|
| 235 |
|
| 236 |
+
# Sampling controls
|
| 237 |
+
with gr.Row():
|
| 238 |
+
temperature = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.8, label="Temperature")
|
| 239 |
+
sampling_toggle = gr.Checkbox(value=True, label="Use sampling (do_sample)")
|
| 240 |
+
|
| 241 |
run_btn = gr.Button("π Generate Full Campaign", variant="primary")
|
| 242 |
+
output_md = gr.Markdown("Your campaign will appear hereβ¦", elem_id="campaign_output_md")
|
| 243 |
|
| 244 |
+
# Hidden outputs for each section
|
| 245 |
cd = gr.Textbox(visible=False)
|
| 246 |
et = gr.Textbox(visible=False)
|
| 247 |
ad = gr.Textbox(visible=False)
|
|
|
|
| 250 |
|
| 251 |
run_btn.click(
|
| 252 |
fn=generate_campaign,
|
| 253 |
+
inputs=[brand_name, product_type, goal, tone, audience, region, temperature, sampling_toggle],
|
| 254 |
outputs=[output_md, cd, et, ad, pp, tg]
|
| 255 |
)
|
| 256 |
|
|
|
|
| 260 |
mood = gr.Textbox(label="Mood & Emotion", value="Epic, reflective")
|
| 261 |
themep = gr.Textbox(label="Theme", value="Master vs Newcomer")
|
| 262 |
audp = gr.Textbox(label="Audience", value="Players & collectors")
|
| 263 |
+
# sampling controls local for poster
|
| 264 |
+
poster_temp = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.8, label="Temperature (poster)")
|
| 265 |
+
poster_sample = gr.Checkbox(value=True, label="Use sampling for poster")
|
| 266 |
gen_poster_btn = gr.Button("π¨ Generate Poster Prompt")
|
| 267 |
poster_out = gr.Textbox(label="Poster Prompt", lines=8)
|
| 268 |
|
| 269 |
gen_poster_btn.click(
|
| 270 |
generate_poster_prompt,
|
| 271 |
+
[brandp, mood, themep, audp, poster_temp, poster_sample],
|
| 272 |
poster_out
|
| 273 |
)
|
| 274 |
|
|
|
|
| 287 |
gr.Markdown("### Export your full campaign as PDF")
|
| 288 |
export_btn = gr.Button("π Export Campaign as PDF")
|
| 289 |
export_file = gr.File()
|
| 290 |
+
|
| 291 |
export_btn.click(export_pdf, inputs=output_md, outputs=export_file)
|
| 292 |
|
| 293 |
demo.launch()
|