Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
|
| 5 |
+
# Load your dataset from Hugging Face
|
| 6 |
+
dataset = load_dataset("diylocals/TestData") # Replace with your actual username and dataset name
|
| 7 |
+
|
| 8 |
+
# Load the IBM Granite model and tokenizer
|
| 9 |
+
model_name = "ibm-granite/granite-3.0-8b-instruct"
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 11 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 12 |
+
|
| 13 |
+
# Streamlit app title
|
| 14 |
+
st.title("IBM Granite Model Analysis")
|
| 15 |
+
|
| 16 |
+
# Input text area for user input
|
| 17 |
+
user_input = st.text_area("Enter text for analysis (e.g., voltage readings):", "")
|
| 18 |
+
|
| 19 |
+
if st.button("Analyze"):
|
| 20 |
+
if user_input:
|
| 21 |
+
# Prepare input for the model
|
| 22 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
| 23 |
+
|
| 24 |
+
# Generate output using the model
|
| 25 |
+
outputs = model.generate(**inputs)
|
| 26 |
+
|
| 27 |
+
# Decode and display output
|
| 28 |
+
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 29 |
+
st.write("Model Output:")
|
| 30 |
+
st.write(output_text)
|
| 31 |
+
else:
|
| 32 |
+
st.warning("Please enter some text for analysis.")
|