Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import os | |
| os.environ["HF_HUB_ENABLE_HF_TRANSFER"]="1" | |
| from langchain.llms import LlamaCpp | |
| from langchain.prompts import PromptTemplate | |
| from langchain.chains import LLMChain | |
| from langchain.callbacks.manager import CallbackManager | |
| from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler | |
| from huggingface_hub import hf_hub_download | |
| callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) | |
| repo_id="TheBloke/Mistral-7B-OpenOrca-GGUF" | |
| model_name="mistral-7b-openorca.Q5_K_M.gguf" | |
| hf_hub_download(repo_id=repo_id, | |
| filename=model_name,local_dir =".") | |
| llm = LlamaCpp( | |
| model_path=model_name, | |
| n_ctx=4096, | |
| callback_manager=callback_manager, | |
| verbose=True, # Verbose is required to pass to the callback manager | |
| ) | |
| def format_prompt(message, history): | |
| prompt = "<s>" | |
| for user_prompt, bot_response in history: | |
| prompt += f"<|im_start|>user\n {user_prompt} <|im_end|>\n" | |
| prompt += f"<|im_start|>assistant\n {bot_response}<|im_end|>\n" | |
| prompt += f"<|im_start|>user\n {message} <|im_end|>\n<|im_start|>assistant\n" | |
| return prompt | |
| def generate( | |
| prompt, history, temperature=0.9, top_p=0.95, max_new_tokens=256,repetition_penalty=1.0, | |
| ): | |
| temperature = float(temperature) | |
| if temperature < 1e-2: | |
| temperature = 1e-2 | |
| top_p = float(top_p) | |
| formatted_prompt = format_prompt(prompt, history) | |
| # stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| output = "" | |
| output=llm(formatted_prompt, | |
| temperature=temperature, | |
| max_tokens=max_new_tokens, | |
| repeat_penalty=repetition_penalty, | |
| top_p=top_p, | |
| stop=["<|im_end|>","<|im_start|>user"] | |
| ) | |
| # output=formatted_prompt+"ans:"+output | |
| # for response in stream: | |
| # output += response.token.text | |
| # yield output | |
| return output | |
| additional_inputs=[ | |
| gr.Slider( | |
| label="Temperature", | |
| value=0.9, | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values produce more diverse outputs", | |
| ), | |
| gr.Slider( | |
| label="Top-p (nucleus sampling)", | |
| value=0.90, | |
| minimum=0.0, | |
| maximum=1, | |
| step=0.05, | |
| interactive=True, | |
| info="Higher values sample more low-probability tokens", | |
| ), | |
| gr.Slider( | |
| label="Max new tokens", | |
| value=400, | |
| minimum=0, | |
| maximum=1048, | |
| step=64, | |
| interactive=True, | |
| info="The maximum numbers of new tokens", | |
| ), | |
| gr.Slider( | |
| label="Repetition penalty", | |
| value=1.2, | |
| minimum=1.0, | |
| maximum=2.0, | |
| step=0.05, | |
| interactive=True, | |
| info="Penalize repeated tokens", | |
| ) | |
| ] | |
| css = """ | |
| #mkd { | |
| height: 500px; | |
| overflow: auto; | |
| border: 1px solid #ccc; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.HTML("<h1><center>Mistral 7B Instruct<h1><center>") | |
| gr.HTML("<h3><center>In this demo, you can chat with <a href='https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1'>Mistral-7B-Instruct</a> model. π¬<h3><center>") | |
| gr.HTML("<h3><center>Learn more about the model <a href='https://huggingface.co/docs/transformers/main/model_doc/mistral'>here</a>. π<h3><center>") | |
| gr.HTML(f"<h3><center>it's lamacpp running {model_name} from {repo_id}<h3><center>") | |
| gr.ChatInterface( | |
| generate, | |
| additional_inputs=additional_inputs, | |
| examples=[["What is the secret to life?"], ["Write me a recipe for pancakes."]] | |
| ) | |
| demo.queue(max_size=None).launch(debug=True) |