File size: 2,222 Bytes
9c28499
 
 
 
 
 
 
 
588ba9b
9c28499
 
588ba9b
 
9c28499
 
 
 
 
 
57dc0e4
 
96ef181
57dc0e4
588ba9b
 
9c28499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eae068
 
aae1ac3
9c28499
 
0eae068
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
"""
Configuration file for LLM provider
Change LLM_PROVIDER to switch between different models
"""

import os

# Swappable LLM provider (environment configurable)
LLM_PROVIDER = os.getenv("LLM_PROVIDER", "beam")  # Options: "beam", "huggingface", "local"

# API Keys (set these as environment variables in HuggingFace Space secrets)
BEAM_API_URL = os.getenv("BEAM_API_URL", "")
BEAM_API_TOKEN = os.getenv("BEAM_API_TOKEN", "")
HUGGINGFACE_API_KEY = os.getenv("HUGGINGFACE_API_KEY", "")

# Model configurations
HUGGINGFACE_MODEL = "google/gemma-2-2b-it"

# Local model configuration (for quantized models hosted within the Space)
LOCAL_MODEL_REPO = os.getenv("LOCAL_MODEL_REPO", "bartowski/Qwen_Qwen3-4B-Instruct-2507-GGUF")
LOCAL_MODEL_FILENAME = os.getenv("LOCAL_MODEL_FILENAME", "Qwen_Qwen3-4B-Instruct-2507-Q4_K_M.gguf")  # Q4_K_M (2.50GB, recommended)
LOCAL_MODEL_CONTEXT_LENGTH = int(os.getenv("LOCAL_MODEL_CONTEXT_LENGTH", "2048"))
LOCAL_MODEL_THREADS = int(os.getenv("LOCAL_MODEL_THREADS", str(os.cpu_count() or 2)))  # HF Spaces has 2 vCPUs
LOCAL_MODEL_BATCH_SIZE = int(os.getenv("LOCAL_MODEL_BATCH_SIZE", "1024"))  # Optimal for CPU throughput
LOCAL_MODEL_MAX_OUTPUT_TOKENS = int(os.getenv("LOCAL_MODEL_MAX_OUTPUT_TOKENS", "100"))  # Shorter responses for faster UX
LOCAL_MODEL_HF_TOKEN = os.getenv("LOCAL_MODEL_HF_TOKEN", HUGGINGFACE_API_KEY or "")

# Access control configuration
CLIENT_APP_ORIGINS = [
    origin.strip()
    for origin in os.getenv("CLIENT_APP_ORIGINS", "").split(",")
    if origin.strip()
]
API_ACCESS_TOKEN = os.getenv("API_ACCESS_TOKEN", "")

# Session token configuration
SESSION_TOKEN_SECRET = os.getenv("SESSION_TOKEN_SECRET", "")
SESSION_TOKEN_TTL_SECONDS = int(os.getenv("SESSION_TOKEN_TTL_SECONDS", "600"))

# RAG Configuration
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"  # Fast, lightweight
CHUNK_SIZE = 300  # Characters per chunk (reduced for faster inference)
CHUNK_OVERLAP = 30  # Overlap between chunks
TOP_K_RESULTS = 3  # Retrieve top 3 most relevant chunks (more context for GPU inference)

# System prompt for the chatbot
SYSTEM_PROMPT = """Answer questions about Bi using the provided context. Keep answers short and direct. Always refer to Bi by name."""