Spaces:
Build error
Build error
Upload 191 files
Browse files- Transcripts/AMZN/2019-Apr-25-AMZN.txt +1 -1
- app.py +86 -35
- utils.py +177 -20
Transcripts/AMZN/2019-Apr-25-AMZN.txt
CHANGED
|
@@ -69,7 +69,7 @@ With that, we will move to Q&A. Operator, please remind our listeners how to ini
|
|
| 69 |
|
| 70 |
================================================================================
|
| 71 |
Questions and Answers
|
| 72 |
-
================================================================================
|
| 73 |
--------------------------------------------------------------------------------
|
| 74 |
Operator [1]
|
| 75 |
--------------------------------------------------------------------------------
|
|
|
|
| 69 |
|
| 70 |
================================================================================
|
| 71 |
Questions and Answers
|
| 72 |
+
================================================================================
|
| 73 |
--------------------------------------------------------------------------------
|
| 74 |
Operator [1]
|
| 75 |
--------------------------------------------------------------------------------
|
app.py
CHANGED
|
@@ -1,29 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pinecone
|
| 2 |
import streamlit as st
|
| 3 |
-
|
| 4 |
-
st.set_page_config(layout="wide")
|
| 5 |
-
|
| 6 |
-
import streamlit_scrollable_textbox as stx
|
| 7 |
-
import openai
|
| 8 |
from utils import (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
get_data,
|
|
|
|
| 10 |
get_mpnet_embedding_model,
|
| 11 |
get_sgpt_embedding_model,
|
| 12 |
-
|
| 13 |
get_t5_model,
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
from utils import (
|
| 18 |
-
retrieve_transcript,
|
| 19 |
query_pinecone,
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
sentence_id_combine,
|
| 22 |
text_lookup,
|
| 23 |
-
generate_prompt,
|
| 24 |
-
gpt_model,
|
| 25 |
)
|
| 26 |
|
|
|
|
|
|
|
| 27 |
|
| 28 |
st.title("Abstractive Question Answering")
|
| 29 |
|
|
@@ -73,12 +75,14 @@ with st.sidebar:
|
|
| 73 |
st.subheader("Select Options:")
|
| 74 |
|
| 75 |
with st.sidebar:
|
| 76 |
-
num_results = int(
|
|
|
|
|
|
|
| 77 |
|
| 78 |
|
| 79 |
# Choose encoder model
|
| 80 |
|
| 81 |
-
encoder_models_choice = ["MPNET", "SGPT"]
|
| 82 |
with st.sidebar:
|
| 83 |
encoder_model = st.selectbox("Select Encoder Model", encoder_models_choice)
|
| 84 |
|
|
@@ -97,18 +101,34 @@ with st.sidebar:
|
|
| 97 |
|
| 98 |
if encoder_model == "MPNET":
|
| 99 |
# Connect to pinecone environment
|
| 100 |
-
pinecone.init(
|
|
|
|
|
|
|
| 101 |
pinecone_index_name = "week2-all-mpnet-base"
|
| 102 |
pinecone_index = pinecone.Index(pinecone_index_name)
|
| 103 |
retriever_model = get_mpnet_embedding_model()
|
| 104 |
|
| 105 |
elif encoder_model == "SGPT":
|
| 106 |
# Connect to pinecone environment
|
| 107 |
-
pinecone.init(
|
|
|
|
|
|
|
| 108 |
pinecone_index_name = "week2-sgpt-125m"
|
| 109 |
pinecone_index = pinecone.Index(pinecone_index_name)
|
| 110 |
retriever_model = get_sgpt_embedding_model()
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
with st.sidebar:
|
| 114 |
window = int(st.number_input("Sentence Window Size", 0, 10, value=1))
|
|
@@ -116,23 +136,52 @@ with st.sidebar:
|
|
| 116 |
with st.sidebar:
|
| 117 |
threshold = float(
|
| 118 |
st.number_input(
|
| 119 |
-
label="Similarity Score Threshold",
|
|
|
|
|
|
|
|
|
|
| 120 |
)
|
| 121 |
)
|
| 122 |
|
| 123 |
data = get_data()
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
if threshold <= 0.90:
|
| 138 |
context_list = sentence_id_combine(data, query_results, lag=window)
|
|
@@ -145,7 +194,9 @@ prompt = generate_prompt(query_text, context_list)
|
|
| 145 |
if decoder_model == "GPT3 - (text-davinci-003)":
|
| 146 |
with col2:
|
| 147 |
with st.form("my_form"):
|
| 148 |
-
edited_prompt = st.text_area(
|
|
|
|
|
|
|
| 149 |
|
| 150 |
openai_key = st.text_input(
|
| 151 |
"Enter OpenAI key",
|
|
@@ -166,20 +217,20 @@ elif decoder_model == "T5":
|
|
| 166 |
output_text = []
|
| 167 |
for context_text in context_list:
|
| 168 |
output_text.append(t5_pipeline(context_text)[0]["summary_text"])
|
| 169 |
-
generated_text = ". ".join(output_text)
|
| 170 |
with col2:
|
| 171 |
st.subheader("Answer:")
|
| 172 |
-
|
|
|
|
| 173 |
|
| 174 |
elif decoder_model == "FLAN-T5":
|
| 175 |
flan_t5_pipeline = get_flan_t5_model()
|
| 176 |
output_text = []
|
| 177 |
for context_text in context_list:
|
| 178 |
output_text.append(flan_t5_pipeline(context_text)[0]["summary_text"])
|
| 179 |
-
generated_text = ". ".join(output_text)
|
| 180 |
with col2:
|
| 181 |
st.subheader("Answer:")
|
| 182 |
-
|
|
|
|
| 183 |
|
| 184 |
with col1:
|
| 185 |
with st.expander("See Retrieved Text"):
|
|
|
|
| 1 |
+
import openai
|
| 2 |
+
import streamlit_scrollable_textbox as stx
|
| 3 |
+
|
| 4 |
import pinecone
|
| 5 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from utils import (
|
| 7 |
+
create_dense_embeddings,
|
| 8 |
+
create_sparse_embeddings,
|
| 9 |
+
format_query,
|
| 10 |
+
generate_prompt,
|
| 11 |
get_data,
|
| 12 |
+
get_flan_t5_model,
|
| 13 |
get_mpnet_embedding_model,
|
| 14 |
get_sgpt_embedding_model,
|
| 15 |
+
get_splade_sparse_embedding_model,
|
| 16 |
get_t5_model,
|
| 17 |
+
gpt_model,
|
| 18 |
+
hybrid_score_norm,
|
|
|
|
|
|
|
|
|
|
| 19 |
query_pinecone,
|
| 20 |
+
query_pinecone_sparse,
|
| 21 |
+
retrieve_transcript,
|
| 22 |
+
save_key,
|
| 23 |
sentence_id_combine,
|
| 24 |
text_lookup,
|
|
|
|
|
|
|
| 25 |
)
|
| 26 |
|
| 27 |
+
st.set_page_config(layout="wide")
|
| 28 |
+
|
| 29 |
|
| 30 |
st.title("Abstractive Question Answering")
|
| 31 |
|
|
|
|
| 75 |
st.subheader("Select Options:")
|
| 76 |
|
| 77 |
with st.sidebar:
|
| 78 |
+
num_results = int(
|
| 79 |
+
st.number_input("Number of Results to query", 1, 15, value=6)
|
| 80 |
+
)
|
| 81 |
|
| 82 |
|
| 83 |
# Choose encoder model
|
| 84 |
|
| 85 |
+
encoder_models_choice = ["MPNET", "SGPT", "Hybrid MPNET - SPLADE"]
|
| 86 |
with st.sidebar:
|
| 87 |
encoder_model = st.selectbox("Select Encoder Model", encoder_models_choice)
|
| 88 |
|
|
|
|
| 101 |
|
| 102 |
if encoder_model == "MPNET":
|
| 103 |
# Connect to pinecone environment
|
| 104 |
+
pinecone.init(
|
| 105 |
+
api_key=st.secrets["pinecone_mpnet"], environment="us-east1-gcp"
|
| 106 |
+
)
|
| 107 |
pinecone_index_name = "week2-all-mpnet-base"
|
| 108 |
pinecone_index = pinecone.Index(pinecone_index_name)
|
| 109 |
retriever_model = get_mpnet_embedding_model()
|
| 110 |
|
| 111 |
elif encoder_model == "SGPT":
|
| 112 |
# Connect to pinecone environment
|
| 113 |
+
pinecone.init(
|
| 114 |
+
api_key=st.secrets["pinecone_sgpt"], environment="us-east1-gcp"
|
| 115 |
+
)
|
| 116 |
pinecone_index_name = "week2-sgpt-125m"
|
| 117 |
pinecone_index = pinecone.Index(pinecone_index_name)
|
| 118 |
retriever_model = get_sgpt_embedding_model()
|
| 119 |
|
| 120 |
+
elif encoder_model == "Hybrid MPNET - SPLADE":
|
| 121 |
+
pinecone.init(
|
| 122 |
+
api_key=st.secrets["pinecone_hybrid_splade_mpnet"],
|
| 123 |
+
environment="us-central1-gcp",
|
| 124 |
+
)
|
| 125 |
+
pinecone_index_name = "splade-mpnet"
|
| 126 |
+
pinecone_index = pinecone.Index(pinecone_index_name)
|
| 127 |
+
retriever_model = get_mpnet_embedding_model()
|
| 128 |
+
(
|
| 129 |
+
sparse_retriever_model,
|
| 130 |
+
sparse_retriever_tokenizer,
|
| 131 |
+
) = get_splade_sparse_embedding_model()
|
| 132 |
|
| 133 |
with st.sidebar:
|
| 134 |
window = int(st.number_input("Sentence Window Size", 0, 10, value=1))
|
|
|
|
| 136 |
with st.sidebar:
|
| 137 |
threshold = float(
|
| 138 |
st.number_input(
|
| 139 |
+
label="Similarity Score Threshold",
|
| 140 |
+
step=0.05,
|
| 141 |
+
format="%.2f",
|
| 142 |
+
value=0.25,
|
| 143 |
)
|
| 144 |
)
|
| 145 |
|
| 146 |
data = get_data()
|
| 147 |
|
| 148 |
+
if encoder_model == "Hybrid SGPT - SPLADE":
|
| 149 |
+
dense_query_embedding = create_dense_embeddings(
|
| 150 |
+
query_text, retriever_model
|
| 151 |
+
)
|
| 152 |
+
sparse_query_embedding = create_sparse_embeddings(
|
| 153 |
+
query_text, sparse_retriever_model, sparse_retriever_tokenizer
|
| 154 |
+
)
|
| 155 |
+
dense_query_embedding, sparse_query_embedding = hybrid_score_norm(
|
| 156 |
+
dense_query_embedding, sparse_query_embedding, 0
|
| 157 |
+
)
|
| 158 |
+
query_results = query_pinecone_sparse(
|
| 159 |
+
dense_query_embedding,
|
| 160 |
+
sparse_query_embedding,
|
| 161 |
+
num_results,
|
| 162 |
+
pinecone_index,
|
| 163 |
+
year,
|
| 164 |
+
quarter,
|
| 165 |
+
ticker,
|
| 166 |
+
participant_type,
|
| 167 |
+
threshold,
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
else:
|
| 171 |
+
dense_query_embedding = create_dense_embeddings(
|
| 172 |
+
query_text, retriever_model
|
| 173 |
+
)
|
| 174 |
+
query_results = query_pinecone(
|
| 175 |
+
dense_query_embedding,
|
| 176 |
+
num_results,
|
| 177 |
+
pinecone_index,
|
| 178 |
+
year,
|
| 179 |
+
quarter,
|
| 180 |
+
ticker,
|
| 181 |
+
participant_type,
|
| 182 |
+
threshold,
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
|
| 186 |
if threshold <= 0.90:
|
| 187 |
context_list = sentence_id_combine(data, query_results, lag=window)
|
|
|
|
| 194 |
if decoder_model == "GPT3 - (text-davinci-003)":
|
| 195 |
with col2:
|
| 196 |
with st.form("my_form"):
|
| 197 |
+
edited_prompt = st.text_area(
|
| 198 |
+
label="Model Prompt", value=prompt, height=270
|
| 199 |
+
)
|
| 200 |
|
| 201 |
openai_key = st.text_input(
|
| 202 |
"Enter OpenAI key",
|
|
|
|
| 217 |
output_text = []
|
| 218 |
for context_text in context_list:
|
| 219 |
output_text.append(t5_pipeline(context_text)[0]["summary_text"])
|
|
|
|
| 220 |
with col2:
|
| 221 |
st.subheader("Answer:")
|
| 222 |
+
for text in output_text:
|
| 223 |
+
st.markdown(f"- {text}")
|
| 224 |
|
| 225 |
elif decoder_model == "FLAN-T5":
|
| 226 |
flan_t5_pipeline = get_flan_t5_model()
|
| 227 |
output_text = []
|
| 228 |
for context_text in context_list:
|
| 229 |
output_text.append(flan_t5_pipeline(context_text)[0]["summary_text"])
|
|
|
|
| 230 |
with col2:
|
| 231 |
st.subheader("Answer:")
|
| 232 |
+
for text in output_text:
|
| 233 |
+
st.markdown(f"- {text}")
|
| 234 |
|
| 235 |
with col1:
|
| 236 |
with st.expander("See Retrieved Text"):
|
utils.py
CHANGED
|
@@ -1,18 +1,18 @@
|
|
| 1 |
-
import
|
| 2 |
-
import pandas as pd
|
| 3 |
import pandas as pd
|
| 4 |
-
|
| 5 |
-
import pinecone
|
| 6 |
import torch
|
| 7 |
from sentence_transformers import SentenceTransformer
|
|
|
|
| 8 |
from transformers import (
|
| 9 |
-
|
| 10 |
-
AutoTokenizer,
|
| 11 |
-
AutoModelForCausalLM,
|
| 12 |
AutoModelForSeq2SeqLM,
|
|
|
|
|
|
|
| 13 |
)
|
| 14 |
-
|
| 15 |
-
import
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
@st.experimental_singleton
|
|
@@ -32,7 +32,11 @@ def get_t5_model():
|
|
| 32 |
@st.experimental_singleton
|
| 33 |
def get_flan_t5_model():
|
| 34 |
return pipeline(
|
| 35 |
-
"summarization",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
)
|
| 37 |
|
| 38 |
|
|
@@ -46,6 +50,18 @@ def get_mpnet_embedding_model():
|
|
| 46 |
return model
|
| 47 |
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
@st.experimental_singleton
|
| 50 |
def get_sgpt_embedding_model():
|
| 51 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -61,20 +77,152 @@ def save_key(api_key):
|
|
| 61 |
return api_key
|
| 62 |
|
| 63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
def query_pinecone(
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
):
|
| 67 |
if participant_type == "Company Speaker":
|
| 68 |
participant = "Answer"
|
| 69 |
else:
|
| 70 |
participant = "Question"
|
| 71 |
-
# generate embeddings for the query
|
| 72 |
-
xq = model.encode([query]).tolist()
|
| 73 |
|
| 74 |
if year == "All":
|
| 75 |
if quarter == "All":
|
| 76 |
xc = index.query(
|
| 77 |
-
|
| 78 |
top_k=top_k,
|
| 79 |
filter={
|
| 80 |
"Year": {
|
|
@@ -94,7 +242,7 @@ def query_pinecone(
|
|
| 94 |
)
|
| 95 |
else:
|
| 96 |
xc = index.query(
|
| 97 |
-
|
| 98 |
top_k=top_k,
|
| 99 |
filter={
|
| 100 |
"Year": {
|
|
@@ -115,7 +263,7 @@ def query_pinecone(
|
|
| 115 |
else:
|
| 116 |
# search pinecone index for context passage with the answer
|
| 117 |
xc = index.query(
|
| 118 |
-
|
| 119 |
top_k=top_k,
|
| 120 |
filter={
|
| 121 |
"Year": int(year),
|
|
@@ -136,24 +284,33 @@ def query_pinecone(
|
|
| 136 |
|
| 137 |
def format_query(query_results):
|
| 138 |
# extract passage_text from Pinecone search result
|
| 139 |
-
context = [
|
|
|
|
|
|
|
| 140 |
return context
|
| 141 |
|
| 142 |
|
| 143 |
def sentence_id_combine(data, query_results, lag=1):
|
| 144 |
# Extract sentence IDs from query results
|
| 145 |
-
ids = [
|
|
|
|
|
|
|
|
|
|
| 146 |
# Generate new IDs by adding a lag value to the original IDs
|
| 147 |
new_ids = [id + i for id in ids for i in range(-lag, lag + 1)]
|
| 148 |
# Remove duplicates and sort the new IDs
|
| 149 |
new_ids = sorted(set(new_ids))
|
| 150 |
# Create a list of lookup IDs by grouping the new IDs in groups of lag*2+1
|
| 151 |
lookup_ids = [
|
| 152 |
-
new_ids[i : i + (lag * 2 + 1)]
|
|
|
|
| 153 |
]
|
| 154 |
# Create a list of context sentences by joining the sentences corresponding to the lookup IDs
|
| 155 |
context_list = [
|
| 156 |
-
" ".join(
|
|
|
|
|
|
|
|
|
|
| 157 |
]
|
| 158 |
return context_list
|
| 159 |
|
|
|
|
| 1 |
+
import openai
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
+
import streamlit_scrollable_textbox as stx
|
|
|
|
| 4 |
import torch
|
| 5 |
from sentence_transformers import SentenceTransformer
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
from transformers import (
|
| 8 |
+
AutoModelForMaskedLM,
|
|
|
|
|
|
|
| 9 |
AutoModelForSeq2SeqLM,
|
| 10 |
+
AutoTokenizer,
|
| 11 |
+
pipeline,
|
| 12 |
)
|
| 13 |
+
|
| 14 |
+
import pinecone
|
| 15 |
+
import streamlit as st
|
| 16 |
|
| 17 |
|
| 18 |
@st.experimental_singleton
|
|
|
|
| 32 |
@st.experimental_singleton
|
| 33 |
def get_flan_t5_model():
|
| 34 |
return pipeline(
|
| 35 |
+
"summarization",
|
| 36 |
+
model="google/flan-t5-small",
|
| 37 |
+
tokenizer="google/flan-t5-small",
|
| 38 |
+
max_length=512,
|
| 39 |
+
# length_penalty = 0
|
| 40 |
)
|
| 41 |
|
| 42 |
|
|
|
|
| 50 |
return model
|
| 51 |
|
| 52 |
|
| 53 |
+
@st.experimental_singleton
|
| 54 |
+
def get_splade_sparse_embedding_model():
|
| 55 |
+
model_sparse = "naver/splade-cocondenser-ensembledistil"
|
| 56 |
+
# check device
|
| 57 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 58 |
+
tokenizer = AutoTokenizer.from_pretrained(model_sparse)
|
| 59 |
+
model_sparse = AutoModelForMaskedLM.from_pretrained(model_sparse)
|
| 60 |
+
# move to gpu if available
|
| 61 |
+
model_sparse.to(device)
|
| 62 |
+
return model_sparse, tokenizer
|
| 63 |
+
|
| 64 |
+
|
| 65 |
@st.experimental_singleton
|
| 66 |
def get_sgpt_embedding_model():
|
| 67 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 77 |
return api_key
|
| 78 |
|
| 79 |
|
| 80 |
+
def create_dense_embeddings(query, model):
|
| 81 |
+
dense_emb = model.encode([query]).tolist()
|
| 82 |
+
return dense_emb
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def create_sparse_embeddings(query, model, tokenizer):
|
| 86 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 87 |
+
inputs = tokenizer(query, return_tensors="pt").to(device)
|
| 88 |
+
|
| 89 |
+
with torch.no_grad():
|
| 90 |
+
logits = model(**inputs).logits
|
| 91 |
+
|
| 92 |
+
inter = torch.log1p(torch.relu(logits[0]))
|
| 93 |
+
token_max = torch.max(inter, dim=0) # sum over input tokens
|
| 94 |
+
nz_tokens = torch.where(token_max.values > 0)[0]
|
| 95 |
+
nz_weights = token_max.values[nz_tokens]
|
| 96 |
+
|
| 97 |
+
order = torch.sort(nz_weights, descending=True)
|
| 98 |
+
nz_weights = nz_weights[order[1]]
|
| 99 |
+
nz_tokens = nz_tokens[order[1]]
|
| 100 |
+
return {
|
| 101 |
+
"indices": nz_tokens.cpu().numpy().tolist(),
|
| 102 |
+
"values": nz_weights.cpu().numpy().tolist(),
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def hybrid_score_norm(dense, sparse, alpha: float):
|
| 107 |
+
"""Hybrid score using a convex combination
|
| 108 |
+
|
| 109 |
+
alpha * dense + (1 - alpha) * sparse
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
dense: Array of floats representing
|
| 113 |
+
sparse: a dict of `indices` and `values`
|
| 114 |
+
alpha: scale between 0 and 1
|
| 115 |
+
"""
|
| 116 |
+
if alpha < 0 or alpha > 1:
|
| 117 |
+
raise ValueError("Alpha must be between 0 and 1")
|
| 118 |
+
hs = {
|
| 119 |
+
"indices": sparse["indices"],
|
| 120 |
+
"values": [v * (1 - alpha) for v in sparse["values"]],
|
| 121 |
+
}
|
| 122 |
+
return [v * alpha for v in dense], hs
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
def query_pinecone_sparse(
|
| 126 |
+
dense_vec,
|
| 127 |
+
sparse_vec,
|
| 128 |
+
top_k,
|
| 129 |
+
index,
|
| 130 |
+
year,
|
| 131 |
+
quarter,
|
| 132 |
+
ticker,
|
| 133 |
+
participant_type,
|
| 134 |
+
threshold=0.25,
|
| 135 |
+
):
|
| 136 |
+
if participant_type == "Company Speaker":
|
| 137 |
+
participant = "Answer"
|
| 138 |
+
else:
|
| 139 |
+
participant = "Question"
|
| 140 |
+
|
| 141 |
+
if year == "All":
|
| 142 |
+
if quarter == "All":
|
| 143 |
+
xc = index.query(
|
| 144 |
+
vector=dense_vec,
|
| 145 |
+
sparse_vector=sparse_vec,
|
| 146 |
+
top_k=top_k,
|
| 147 |
+
filter={
|
| 148 |
+
"Year": {
|
| 149 |
+
"$in": [
|
| 150 |
+
int("2020"),
|
| 151 |
+
int("2019"),
|
| 152 |
+
int("2018"),
|
| 153 |
+
int("2017"),
|
| 154 |
+
int("2016"),
|
| 155 |
+
]
|
| 156 |
+
},
|
| 157 |
+
"Quarter": {"$in": ["Q1", "Q2", "Q3", "Q4"]},
|
| 158 |
+
"Ticker": {"$eq": ticker},
|
| 159 |
+
"QA_Flag": {"$eq": participant},
|
| 160 |
+
},
|
| 161 |
+
include_metadata=True,
|
| 162 |
+
)
|
| 163 |
+
else:
|
| 164 |
+
xc = index.query(
|
| 165 |
+
vector=dense_vec,
|
| 166 |
+
sparse_vector=sparse_vec,
|
| 167 |
+
top_k=top_k,
|
| 168 |
+
filter={
|
| 169 |
+
"Year": {
|
| 170 |
+
"$in": [
|
| 171 |
+
int("2020"),
|
| 172 |
+
int("2019"),
|
| 173 |
+
int("2018"),
|
| 174 |
+
int("2017"),
|
| 175 |
+
int("2016"),
|
| 176 |
+
]
|
| 177 |
+
},
|
| 178 |
+
"Quarter": {"$eq": quarter},
|
| 179 |
+
"Ticker": {"$eq": ticker},
|
| 180 |
+
"QA_Flag": {"$eq": participant},
|
| 181 |
+
},
|
| 182 |
+
include_metadata=True,
|
| 183 |
+
)
|
| 184 |
+
else:
|
| 185 |
+
# search pinecone index for context passage with the answer
|
| 186 |
+
xc = index.query(
|
| 187 |
+
vector=dense_vec,
|
| 188 |
+
sparse_vector=sparse_vec,
|
| 189 |
+
top_k=top_k,
|
| 190 |
+
filter={
|
| 191 |
+
"Year": int(year),
|
| 192 |
+
"Quarter": {"$eq": quarter},
|
| 193 |
+
"Ticker": {"$eq": ticker},
|
| 194 |
+
"QA_Flag": {"$eq": participant},
|
| 195 |
+
},
|
| 196 |
+
include_metadata=True,
|
| 197 |
+
)
|
| 198 |
+
# filter the context passages based on the score threshold
|
| 199 |
+
filtered_matches = []
|
| 200 |
+
for match in xc["matches"]:
|
| 201 |
+
if match["score"] >= threshold:
|
| 202 |
+
filtered_matches.append(match)
|
| 203 |
+
xc["matches"] = filtered_matches
|
| 204 |
+
return xc
|
| 205 |
+
|
| 206 |
+
|
| 207 |
def query_pinecone(
|
| 208 |
+
dense_vec,
|
| 209 |
+
top_k,
|
| 210 |
+
index,
|
| 211 |
+
year,
|
| 212 |
+
quarter,
|
| 213 |
+
ticker,
|
| 214 |
+
participant_type,
|
| 215 |
+
threshold=0.25,
|
| 216 |
):
|
| 217 |
if participant_type == "Company Speaker":
|
| 218 |
participant = "Answer"
|
| 219 |
else:
|
| 220 |
participant = "Question"
|
|
|
|
|
|
|
| 221 |
|
| 222 |
if year == "All":
|
| 223 |
if quarter == "All":
|
| 224 |
xc = index.query(
|
| 225 |
+
vector=dense_vec,
|
| 226 |
top_k=top_k,
|
| 227 |
filter={
|
| 228 |
"Year": {
|
|
|
|
| 242 |
)
|
| 243 |
else:
|
| 244 |
xc = index.query(
|
| 245 |
+
vector=dense_vec,
|
| 246 |
top_k=top_k,
|
| 247 |
filter={
|
| 248 |
"Year": {
|
|
|
|
| 263 |
else:
|
| 264 |
# search pinecone index for context passage with the answer
|
| 265 |
xc = index.query(
|
| 266 |
+
vector=dense_vec,
|
| 267 |
top_k=top_k,
|
| 268 |
filter={
|
| 269 |
"Year": int(year),
|
|
|
|
| 284 |
|
| 285 |
def format_query(query_results):
|
| 286 |
# extract passage_text from Pinecone search result
|
| 287 |
+
context = [
|
| 288 |
+
result["metadata"]["Text"] for result in query_results["matches"]
|
| 289 |
+
]
|
| 290 |
return context
|
| 291 |
|
| 292 |
|
| 293 |
def sentence_id_combine(data, query_results, lag=1):
|
| 294 |
# Extract sentence IDs from query results
|
| 295 |
+
ids = [
|
| 296 |
+
result["metadata"]["Sentence_id"]
|
| 297 |
+
for result in query_results["matches"]
|
| 298 |
+
]
|
| 299 |
# Generate new IDs by adding a lag value to the original IDs
|
| 300 |
new_ids = [id + i for id in ids for i in range(-lag, lag + 1)]
|
| 301 |
# Remove duplicates and sort the new IDs
|
| 302 |
new_ids = sorted(set(new_ids))
|
| 303 |
# Create a list of lookup IDs by grouping the new IDs in groups of lag*2+1
|
| 304 |
lookup_ids = [
|
| 305 |
+
new_ids[i : i + (lag * 2 + 1)]
|
| 306 |
+
for i in range(0, len(new_ids), lag * 2 + 1)
|
| 307 |
]
|
| 308 |
# Create a list of context sentences by joining the sentences corresponding to the lookup IDs
|
| 309 |
context_list = [
|
| 310 |
+
" ".join(
|
| 311 |
+
data.loc[data["Sentence_id"].isin(lookup_id), "Text"].to_list()
|
| 312 |
+
)
|
| 313 |
+
for lookup_id in lookup_ids
|
| 314 |
]
|
| 315 |
return context_list
|
| 316 |
|