| import gradio as gr | |
| import requests | |
| import os | |
| import base64 | |
| from PIL import Image | |
| import io | |
| api_key = os.getenv('API_KEY') | |
| def resize_image(image_path, max_size=(800, 800), quality=85): | |
| with Image.open(image_path) as img: | |
| img.thumbnail(max_size, Image.Resampling.LANCZOS) | |
| buffer = io.BytesIO() | |
| img.save(buffer, format="JPEG", quality=quality) | |
| return buffer.getvalue() | |
| def filepath_to_base64(image_path): | |
| img_bytes = resize_image(image_path) | |
| img_base64 = base64.b64encode(img_bytes) | |
| return img_base64.decode('utf-8') | |
| def format_response(response_body): | |
| content = response_body['choices'][0]['message']['content'] | |
| formatted_content = content.replace("<0x0A>", "\n") | |
| return formatted_content | |
| def call_deplot_api(image_path, content, temperature=0.2, top_p=0.7, max_tokens=1024): | |
| image_base64 = filepath_to_base64(image_path) | |
| invoke_url = "https://api.nvcf.nvidia.com/v2/nvcf/pexec/functions/3bc390c7-eeec-40f7-a64d-0c6a719985f7" | |
| api_key = os.getenv('API_KEY') | |
| headers = { | |
| "Authorization": f"Bearer {api_key}", | |
| "Accept": "application/json", | |
| } | |
| payload = { | |
| "messages": [ | |
| { | |
| "content": f"{content} <img src=\"data:image/jpeg;base64,{image_base64}\" />", | |
| "role": "user" | |
| } | |
| ], | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "max_tokens": max_tokens, | |
| "stream": False | |
| } | |
| session = requests.Session() | |
| response = session.post(invoke_url, headers=headers, json=payload) | |
| while response.status_code == 202: | |
| request_id = response.headers.get("NVCF-REQID") | |
| fetch_url = f"https://api.nvcf.nvidia.com/v2/nvcf/pexec/status/{request_id}" | |
| response = session.get(fetch_url, headers=headers) | |
| response.raise_for_status() | |
| response_body = response.json() | |
| return format_response(response_body) | |
| content_input = gr.Textbox(lines=2, placeholder="Enter your content here...", label="Content") | |
| image_input = gr.Image(type="filepath", label="Upload Image") | |
| temperature_input = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.2, label="Temperature") | |
| top_p_input = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.7, label="Top P") | |
| max_tokens_input = gr.Slider(minimum=1, maximum=1024, step=1, value=1024, label="Max Tokens") | |
| iface = gr.Interface(fn=call_deplot_api, | |
| inputs=[image_input, content_input, temperature_input, top_p_input, max_tokens_input], | |
| outputs="text", | |
| title="Google DePlot API Explorer", | |
| description=""" | |
| <div style="text-align: center; font-size: 1.5em; margin-bottom: 20px;"> | |
| <strong>Explore Visual Language Understanding with Google DePlot</strong> | |
| </div> | |
| <p> | |
| Utilize Google DePlot to translate images of plots or charts into linearized tables. This one-shot visual language understanding solution offers a unique approach to interpreting visual data. | |
| </p> | |
| """ | |
| ) | |
| iface.launch() | |