Spaces:
Paused
Paused
lanny xu
commited on
Commit
·
a576aa9
1
Parent(s):
c33bb69
resolve conflict
Browse files- entity_extractor.py +125 -3
- graph_indexer.py +81 -22
- requirements_graphrag.txt +3 -0
entity_extractor.py
CHANGED
|
@@ -5,6 +5,9 @@
|
|
| 5 |
|
| 6 |
from typing import List, Dict, Tuple
|
| 7 |
import time
|
|
|
|
|
|
|
|
|
|
| 8 |
try:
|
| 9 |
from langchain_core.prompts import PromptTemplate
|
| 10 |
except ImportError:
|
|
@@ -16,14 +19,15 @@ from config import LOCAL_LLM
|
|
| 16 |
|
| 17 |
|
| 18 |
class EntityExtractor:
|
| 19 |
-
"""实体提取器 - 使用LLM
|
| 20 |
|
| 21 |
-
def __init__(self, timeout: int = 60, max_retries: int = 3):
|
| 22 |
"""初始化实体提取器
|
| 23 |
|
| 24 |
Args:
|
| 25 |
timeout: LLM调用超时时间(秒)
|
| 26 |
max_retries: 失败重试次数
|
|
|
|
| 27 |
"""
|
| 28 |
self.llm = ChatOllama(
|
| 29 |
model=LOCAL_LLM,
|
|
@@ -32,6 +36,8 @@ class EntityExtractor:
|
|
| 32 |
timeout=timeout # 添加超时设置
|
| 33 |
)
|
| 34 |
self.max_retries = max_retries
|
|
|
|
|
|
|
| 35 |
|
| 36 |
# 实体提取提示模板
|
| 37 |
self.entity_prompt = PromptTemplate(
|
|
@@ -175,9 +181,124 @@ class EntityExtractor:
|
|
| 175 |
return []
|
| 176 |
return []
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
def extract_from_document(self, document_text: str, doc_index: int = 0) -> Dict:
|
| 179 |
"""
|
| 180 |
-
|
| 181 |
|
| 182 |
Args:
|
| 183 |
document_text: 文档文本
|
|
@@ -186,6 +307,7 @@ class EntityExtractor:
|
|
| 186 |
Returns:
|
| 187 |
包含实体和关系的字典
|
| 188 |
"""
|
|
|
|
| 189 |
print(f"\n🔍 文档 #{doc_index + 1}: 开始提取...")
|
| 190 |
|
| 191 |
entities = self.extract_entities(document_text)
|
|
|
|
| 5 |
|
| 6 |
from typing import List, Dict, Tuple
|
| 7 |
import time
|
| 8 |
+
import asyncio
|
| 9 |
+
import aiohttp
|
| 10 |
+
import json
|
| 11 |
try:
|
| 12 |
from langchain_core.prompts import PromptTemplate
|
| 13 |
except ImportError:
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
class EntityExtractor:
|
| 22 |
+
"""实体提取器 - 使用LLM从文本中提取实体(支持异步批处理)"""
|
| 23 |
|
| 24 |
+
def __init__(self, timeout: int = 60, max_retries: int = 3, enable_async: bool = True):
|
| 25 |
"""初始化实体提取器
|
| 26 |
|
| 27 |
Args:
|
| 28 |
timeout: LLM调用超时时间(秒)
|
| 29 |
max_retries: 失败重试次数
|
| 30 |
+
enable_async: 是否启用异步处理(默认启用)
|
| 31 |
"""
|
| 32 |
self.llm = ChatOllama(
|
| 33 |
model=LOCAL_LLM,
|
|
|
|
| 36 |
timeout=timeout # 添加超时设置
|
| 37 |
)
|
| 38 |
self.max_retries = max_retries
|
| 39 |
+
self.enable_async = enable_async
|
| 40 |
+
self.ollama_url = "http://localhost:11434/api/generate"
|
| 41 |
|
| 42 |
# 实体提取提示模板
|
| 43 |
self.entity_prompt = PromptTemplate(
|
|
|
|
| 181 |
return []
|
| 182 |
return []
|
| 183 |
|
| 184 |
+
async def _async_llm_call(self, prompt: str, session: aiohttp.ClientSession, attempt: int = 0) -> Dict:
|
| 185 |
+
"""异步调用 Ollama API"""
|
| 186 |
+
try:
|
| 187 |
+
async with session.post(
|
| 188 |
+
self.ollama_url,
|
| 189 |
+
json={
|
| 190 |
+
"model": LOCAL_LLM,
|
| 191 |
+
"prompt": prompt,
|
| 192 |
+
"format": "json",
|
| 193 |
+
"stream": False,
|
| 194 |
+
"options": {"temperature": 0}
|
| 195 |
+
},
|
| 196 |
+
timeout=aiohttp.ClientTimeout(total=self.llm.timeout if hasattr(self.llm, 'timeout') else 60)
|
| 197 |
+
) as response:
|
| 198 |
+
if response.status == 200:
|
| 199 |
+
result = await response.json()
|
| 200 |
+
return json.loads(result.get('response', '{}'))
|
| 201 |
+
else:
|
| 202 |
+
raise Exception(f"API返回错误: {response.status}")
|
| 203 |
+
except asyncio.TimeoutError:
|
| 204 |
+
if attempt < self.max_retries - 1:
|
| 205 |
+
await asyncio.sleep((attempt + 1) * 2)
|
| 206 |
+
return await self._async_llm_call(prompt, session, attempt + 1)
|
| 207 |
+
raise
|
| 208 |
+
except Exception as e:
|
| 209 |
+
if attempt < self.max_retries - 1:
|
| 210 |
+
await asyncio.sleep(1)
|
| 211 |
+
return await self._async_llm_call(prompt, session, attempt + 1)
|
| 212 |
+
raise
|
| 213 |
+
|
| 214 |
+
async def _extract_entities_async(self, text: str, doc_index: int, session: aiohttp.ClientSession) -> List[Dict]:
|
| 215 |
+
"""异步提取实体"""
|
| 216 |
+
prompt = self.entity_prompt.format(text=text[:2000])
|
| 217 |
+
|
| 218 |
+
for attempt in range(self.max_retries):
|
| 219 |
+
try:
|
| 220 |
+
print(f" [文档 #{doc_index + 1}] 🔄 提取实体 (尝试 {attempt + 1}/{self.max_retries})...", end="")
|
| 221 |
+
result = await self._async_llm_call(prompt, session, attempt)
|
| 222 |
+
entities = result.get("entities", [])
|
| 223 |
+
print(f" ✅ {len(entities)} 个实体")
|
| 224 |
+
return entities
|
| 225 |
+
except Exception as e:
|
| 226 |
+
print(f" ❌ {str(e)[:50]}")
|
| 227 |
+
if attempt == self.max_retries - 1:
|
| 228 |
+
return []
|
| 229 |
+
return []
|
| 230 |
+
|
| 231 |
+
async def _extract_relations_async(self, text: str, entities: List[Dict], doc_index: int, session: aiohttp.ClientSession) -> List[Dict]:
|
| 232 |
+
"""异步提取关系"""
|
| 233 |
+
if not entities:
|
| 234 |
+
return []
|
| 235 |
+
|
| 236 |
+
entity_names = [e["name"] for e in entities]
|
| 237 |
+
prompt = self.relation_prompt.format(
|
| 238 |
+
text=text[:2000],
|
| 239 |
+
entities=", ".join(entity_names)
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
for attempt in range(self.max_retries):
|
| 243 |
+
try:
|
| 244 |
+
print(f" [文档 #{doc_index + 1}] 🔄 提取关系 (尝试 {attempt + 1}/{self.max_retries})...", end="")
|
| 245 |
+
result = await self._async_llm_call(prompt, session, attempt)
|
| 246 |
+
relations = result.get("relations", [])
|
| 247 |
+
print(f" ✅ {len(relations)} 个关系")
|
| 248 |
+
return relations
|
| 249 |
+
except Exception as e:
|
| 250 |
+
print(f" ❌ {str(e)[:50]}")
|
| 251 |
+
if attempt == self.max_retries - 1:
|
| 252 |
+
return []
|
| 253 |
+
return []
|
| 254 |
+
|
| 255 |
+
async def _extract_from_document_async(self, document_text: str, doc_index: int, session: aiohttp.ClientSession) -> Dict:
|
| 256 |
+
"""异步处理单个文档"""
|
| 257 |
+
print(f"\n🔍 [文档 #{doc_index + 1}] 开始异步提取...")
|
| 258 |
+
|
| 259 |
+
# 并发提取实体和关系(先实体,再关系)
|
| 260 |
+
entities = await self._extract_entities_async(document_text, doc_index, session)
|
| 261 |
+
relations = await self._extract_relations_async(document_text, entities, doc_index, session)
|
| 262 |
+
|
| 263 |
+
print(f"📊 [文档 #{doc_index + 1}] 完成: {len(entities)} 实体, {len(relations)} 关系")
|
| 264 |
+
|
| 265 |
+
return {
|
| 266 |
+
"entities": entities,
|
| 267 |
+
"relations": relations
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
async def extract_batch_async(self, documents: List[Tuple[str, int]]) -> List[Dict]:
|
| 271 |
+
"""异步批量处理多个文档
|
| 272 |
+
|
| 273 |
+
Args:
|
| 274 |
+
documents: 文档列表,每个元素为 (document_text, doc_index) 元组
|
| 275 |
+
|
| 276 |
+
Returns:
|
| 277 |
+
提取结果列表
|
| 278 |
+
"""
|
| 279 |
+
async with aiohttp.ClientSession() as session:
|
| 280 |
+
tasks = [
|
| 281 |
+
self._extract_from_document_async(doc_text, doc_idx, session)
|
| 282 |
+
for doc_text, doc_idx in documents
|
| 283 |
+
]
|
| 284 |
+
|
| 285 |
+
# 并发执行所有任务
|
| 286 |
+
results = await asyncio.gather(*tasks, return_exceptions=True)
|
| 287 |
+
|
| 288 |
+
# 处理异常结果
|
| 289 |
+
processed_results = []
|
| 290 |
+
for i, result in enumerate(results):
|
| 291 |
+
if isinstance(result, Exception):
|
| 292 |
+
print(f"⚠️ 文档 #{documents[i][1] + 1} 处理失败: {result}")
|
| 293 |
+
processed_results.append({"entities": [], "relations": []})
|
| 294 |
+
else:
|
| 295 |
+
processed_results.append(result)
|
| 296 |
+
|
| 297 |
+
return processed_results
|
| 298 |
+
|
| 299 |
def extract_from_document(self, document_text: str, doc_index: int = 0) -> Dict:
|
| 300 |
"""
|
| 301 |
+
从单个文档中提取实体和关系(同步接口,保持向后兼容)
|
| 302 |
|
| 303 |
Args:
|
| 304 |
document_text: 文档文本
|
|
|
|
| 307 |
Returns:
|
| 308 |
包含实体和关系的字典
|
| 309 |
"""
|
| 310 |
+
# 同步方式调用(保持向后兼容)
|
| 311 |
print(f"\n🔍 文档 #{doc_index + 1}: 开始提取...")
|
| 312 |
|
| 313 |
entities = self.extract_entities(document_text)
|
graph_indexer.py
CHANGED
|
@@ -4,6 +4,7 @@ GraphRAG索引器
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
from typing import List, Dict, Optional
|
|
|
|
| 7 |
try:
|
| 8 |
from langchain_core.documents import Document
|
| 9 |
except ImportError:
|
|
@@ -16,17 +17,26 @@ from knowledge_graph import KnowledgeGraph, CommunitySummarizer
|
|
| 16 |
class GraphRAGIndexer:
|
| 17 |
"""GraphRAG索引器 - 实现Microsoft GraphRAG的索引流程"""
|
| 18 |
|
| 19 |
-
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
print("🚀 初始化GraphRAG索引器...")
|
| 21 |
|
| 22 |
-
self.entity_extractor = EntityExtractor()
|
| 23 |
self.entity_deduplicator = EntityDeduplicator()
|
| 24 |
self.knowledge_graph = KnowledgeGraph()
|
| 25 |
self.community_summarizer = CommunitySummarizer()
|
| 26 |
|
|
|
|
|
|
|
| 27 |
self.indexed = False
|
| 28 |
|
| 29 |
-
|
|
|
|
| 30 |
|
| 31 |
def index_documents(self, documents: List[Document],
|
| 32 |
batch_size: int = 10,
|
|
@@ -58,27 +68,35 @@ class GraphRAGIndexer:
|
|
| 58 |
# 步骤1: 实体和关系提取
|
| 59 |
print("📍 步骤 1/5: 实体和关系提取")
|
| 60 |
extraction_results = []
|
| 61 |
-
total_batches = (len(documents) - 1) // batch_size + 1
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
result = self.entity_extractor.extract_from_document(
|
| 72 |
-
doc.page_content,
|
| 73 |
-
doc_index=doc_global_index
|
| 74 |
-
)
|
| 75 |
-
extraction_results.append(result)
|
| 76 |
-
except Exception as e:
|
| 77 |
-
print(f" ❌ 文档 #{doc_global_index + 1} 处理失败: {e}")
|
| 78 |
-
# 添加空结果以保持索引一致
|
| 79 |
-
extraction_results.append({"entities": [], "relations": []})
|
| 80 |
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
# 步骤2: 实体去重
|
| 84 |
print("\n📍 步骤 2/5: 实体去重和合并")
|
|
@@ -142,6 +160,47 @@ class GraphRAGIndexer:
|
|
| 142 |
|
| 143 |
return self.knowledge_graph
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
def get_graph(self) -> KnowledgeGraph:
|
| 146 |
"""获取知识图谱"""
|
| 147 |
if not self.indexed:
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
from typing import List, Dict, Optional
|
| 7 |
+
import asyncio
|
| 8 |
try:
|
| 9 |
from langchain_core.documents import Document
|
| 10 |
except ImportError:
|
|
|
|
| 17 |
class GraphRAGIndexer:
|
| 18 |
"""GraphRAG索引器 - 实现Microsoft GraphRAG的索引流程"""
|
| 19 |
|
| 20 |
+
def __init__(self, enable_async: bool = True, async_batch_size: int = 5):
|
| 21 |
+
"""初始化GraphRAG索引器
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
enable_async: 是否启用异步处理(默认启用)
|
| 25 |
+
async_batch_size: 异步并发批次大小(默认5个文档并发)
|
| 26 |
+
"""
|
| 27 |
print("🚀 初始化GraphRAG索引器...")
|
| 28 |
|
| 29 |
+
self.entity_extractor = EntityExtractor(enable_async=enable_async)
|
| 30 |
self.entity_deduplicator = EntityDeduplicator()
|
| 31 |
self.knowledge_graph = KnowledgeGraph()
|
| 32 |
self.community_summarizer = CommunitySummarizer()
|
| 33 |
|
| 34 |
+
self.enable_async = enable_async
|
| 35 |
+
self.async_batch_size = async_batch_size
|
| 36 |
self.indexed = False
|
| 37 |
|
| 38 |
+
mode = "异步模式" if enable_async else "同步模式"
|
| 39 |
+
print(f"✅ GraphRAG索引器初始化完成 ({mode}, 并发数={async_batch_size})")
|
| 40 |
|
| 41 |
def index_documents(self, documents: List[Document],
|
| 42 |
batch_size: int = 10,
|
|
|
|
| 68 |
# 步骤1: 实体和关系提取
|
| 69 |
print("📍 步骤 1/5: 实体和关系提取")
|
| 70 |
extraction_results = []
|
|
|
|
| 71 |
|
| 72 |
+
if self.enable_async:
|
| 73 |
+
# 异步批量处理模式
|
| 74 |
+
print(f"🚀 使用异步处理模式,并发数={self.async_batch_size}")
|
| 75 |
+
extraction_results = self._extract_async(documents)
|
| 76 |
+
else:
|
| 77 |
+
# 同步处理模式(原有逻辑)
|
| 78 |
+
print("🔄 使用同步处理模式")
|
| 79 |
+
total_batches = (len(documents) - 1) // batch_size + 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
+
for i in range(0, len(documents), batch_size):
|
| 82 |
+
batch = documents[i:i+batch_size]
|
| 83 |
+
batch_num = i // batch_size + 1
|
| 84 |
+
print(f"\n⚙️ === 批次 {batch_num}/{total_batches} (文档 {i+1}-{min(i+batch_size, len(documents))}) ===")
|
| 85 |
+
|
| 86 |
+
for idx, doc in enumerate(batch):
|
| 87 |
+
doc_global_index = i + idx
|
| 88 |
+
try:
|
| 89 |
+
result = self.entity_extractor.extract_from_document(
|
| 90 |
+
doc.page_content,
|
| 91 |
+
doc_index=doc_global_index
|
| 92 |
+
)
|
| 93 |
+
extraction_results.append(result)
|
| 94 |
+
except Exception as e:
|
| 95 |
+
print(f" ❌ 文档 #{doc_global_index + 1} 处理失败: {e}")
|
| 96 |
+
# 添加空结果以保持索引一致
|
| 97 |
+
extraction_results.append({"entities": [], "relations": []})
|
| 98 |
+
|
| 99 |
+
print(f"✅ 批次 {batch_num}/{total_batches} 完成")
|
| 100 |
|
| 101 |
# 步骤2: 实体去重
|
| 102 |
print("\n📍 步骤 2/5: 实体去重和合并")
|
|
|
|
| 160 |
|
| 161 |
return self.knowledge_graph
|
| 162 |
|
| 163 |
+
def _extract_async(self, documents: List[Document]) -> List[Dict]:
|
| 164 |
+
"""异步批量提取实体和关系
|
| 165 |
+
|
| 166 |
+
Args:
|
| 167 |
+
documents: 文档列表
|
| 168 |
+
|
| 169 |
+
Returns:
|
| 170 |
+
提取结果列表
|
| 171 |
+
"""
|
| 172 |
+
total_docs = len(documents)
|
| 173 |
+
extraction_results = []
|
| 174 |
+
|
| 175 |
+
# 将文档分成多个异步批次
|
| 176 |
+
for i in range(0, total_docs, self.async_batch_size):
|
| 177 |
+
batch_end = min(i + self.async_batch_size, total_docs)
|
| 178 |
+
batch_num = i // self.async_batch_size + 1
|
| 179 |
+
total_batches = (total_docs - 1) // self.async_batch_size + 1
|
| 180 |
+
|
| 181 |
+
print(f"\n⚡ === 异步批次 {batch_num}/{total_batches} (文档 {i+1}-{batch_end}) ===")
|
| 182 |
+
|
| 183 |
+
# 准备异步批次数据
|
| 184 |
+
async_batch = [
|
| 185 |
+
(documents[idx].page_content, idx)
|
| 186 |
+
for idx in range(i, batch_end)
|
| 187 |
+
]
|
| 188 |
+
|
| 189 |
+
# 异步执行当前批次
|
| 190 |
+
try:
|
| 191 |
+
batch_results = asyncio.run(
|
| 192 |
+
self.entity_extractor.extract_batch_async(async_batch)
|
| 193 |
+
)
|
| 194 |
+
extraction_results.extend(batch_results)
|
| 195 |
+
print(f"✅ 异步批次 {batch_num}/{total_batches} 完成")
|
| 196 |
+
except Exception as e:
|
| 197 |
+
print(f"❌ 异步批次 {batch_num} 失败: {e}")
|
| 198 |
+
# 添加空结果
|
| 199 |
+
for _ in range(len(async_batch)):
|
| 200 |
+
extraction_results.append({"entities": [], "relations": []})
|
| 201 |
+
|
| 202 |
+
return extraction_results
|
| 203 |
+
|
| 204 |
def get_graph(self) -> KnowledgeGraph:
|
| 205 |
"""获取知识图谱"""
|
| 206 |
if not self.indexed:
|
requirements_graphrag.txt
CHANGED
|
@@ -35,3 +35,6 @@ plotly>=5.18.0
|
|
| 35 |
# 缓存和性能优化
|
| 36 |
diskcache>=5.6.0
|
| 37 |
joblib>=1.3.0
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# 缓存和性能优化
|
| 36 |
diskcache>=5.6.0
|
| 37 |
joblib>=1.3.0
|
| 38 |
+
|
| 39 |
+
# 异步HTTP请求(用于并发处理)
|
| 40 |
+
aiohttp>=3.9.0
|