Spaces:
Paused
Paused
| import torch | |
| from datasets import load_dataset | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TrainingArguments, GenerationConfig | |
| from peft import LoraConfig, get_peft_model, PeftConfig, PeftModel, prepare_model_for_kbit_training | |
| from trl import SFTTrainer | |
| import warnings | |
| warnings.filterwarnings("ignore") | |
| data = load_dataset("heliosbrahma/mental_health_chatbot_dataset") | |
| model_name = "vilsonrodrigues/falcon-7b-instruct-sharded" # sharded falcon-7b model | |
| bnb_config = BitsAndBytesConfig( | |
| load_in_4bit=True, # load model in 4-bit precision | |
| bnb_4bit_quant_type="nf4", # pre-trained model should be quantized in 4-bit NF format | |
| bnb_4bit_use_double_quant=True, # Using double quantization as mentioned in QLoRA paper | |
| bnb_4bit_compute_dtype=torch.bf16, # During computation, pre-trained model should be loaded in BF16 format | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_name, | |
| quantization_config=bnb_config, # Use bitsandbytes config | |
| device_map="auto", # Specifying device_map="auto" so that HF Accelerate will determine which GPU to put each layer of the model on | |
| trust_remote_code=True, # Set trust_remote_code=True to use falcon-7b model with custom code | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # Set trust_remote_code=True | |
| tokenizer.pad_token = tokenizer.eos_token # Setting pad_token same as eos_token | |
| model = prepare_model_for_kbit_training(model) | |
| lora_alpha = 32 # scaling factor for the weight matrices | |
| lora_dropout = 0.05 # dropout probability of the LoRA layers | |
| lora_rank = 16 # dimension of the low-rank matrices | |
| peft_config = LoraConfig( | |
| lora_alpha=lora_alpha, | |
| lora_dropout=lora_dropout, | |
| r=lora_rank, | |
| bias="none", # setting to 'none' for only training weight params instead of biases | |
| task_type="CAUSAL_LM", | |
| target_modules=[ # Setting names of modules in falcon-7b model that we want to apply LoRA to | |
| "query_key_value", | |
| "dense", | |
| "dense_h_to_4h", | |
| "dense_4h_to_h", | |
| ] | |
| ) | |
| peft_model = get_peft_model(model, peft_config) | |
| output_dir = "./falcon-7b-sharded-fp16-finetuned-mental-health-conversational" | |
| per_device_train_batch_size = 16 # reduce batch size by 2x if out-of-memory error | |
| gradient_accumulation_steps = 4 # increase gradient accumulation steps by 2x if batch size is reduced | |
| optim = "paged_adamw_32bit" # activates the paging for better memory management | |
| save_strategy="steps" # checkpoint save strategy to adopt during training | |
| save_steps = 10 # number of updates steps before two checkpoint saves | |
| logging_steps = 10 # number of update steps between two logs if logging_strategy="steps" | |
| learning_rate = 2e-4 # learning rate for AdamW optimizer | |
| max_grad_norm = 0.3 # maximum gradient norm (for gradient clipping) | |
| max_steps = 70 # training will happen for 70 steps | |
| warmup_ratio = 0.03 # number of steps used for a linear warmup from 0 to learning_rate | |
| lr_scheduler_type = "cosine" # learning rate scheduler | |
| training_arguments = TrainingArguments( | |
| output_dir=output_dir, | |
| per_device_train_batch_size=per_device_train_batch_size, | |
| gradient_accumulation_steps=gradient_accumulation_steps, | |
| optim=optim, | |
| save_steps=save_steps, | |
| logging_steps=logging_steps, | |
| learning_rate=learning_rate, | |
| bf16=True, | |
| max_grad_norm=max_grad_norm, | |
| max_steps=max_steps, | |
| warmup_ratio=warmup_ratio, | |
| group_by_length=True, | |
| lr_scheduler_type=lr_scheduler_type, | |
| push_to_hub=True, | |
| ) | |
| trainer = SFTTrainer( | |
| model=peft_model, | |
| train_dataset=data['train'], | |
| peft_config=peft_config, | |
| dataset_text_field="text", | |
| ac=1024, | |
| tokenizer=tokenizer, | |
| args=training_arguments, | |
| ) | |
| # upcasting the layer norms in torch.bfloat16 for more stable training | |
| for name, module in trainer.model.named_modules(): | |
| if "norm" in name: | |
| module = module.to(torch.bfloat16) | |
| peft_model.config.use_cache = False | |
| trainer.train() | |
| trainer.push_to_hub("therapx") | |
| # import gradio as gr | |
| # import torch | |
| # import re, os, warnings | |
| # from langchain import PromptTemplate, LLMChain | |
| # from langchain.llms.base import LLM | |
| # from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, GenerationConfig | |
| # from peft import LoraConfig, get_peft_model, PeftConfig, PeftModel | |
| # warnings.filterwarnings("ignore") | |
| # def init_model_and_tokenizer(PEFT_MODEL): | |
| # config = PeftConfig.from_pretrained(PEFT_MODEL) | |
| # bnb_config = BitsAndBytesConfig( | |
| # load_in_4bit=True, | |
| # bnb_4bit_quant_type="nf4", | |
| # bnb_4bit_use_double_quant=True, | |
| # bnb_4bit_compute_dtype=torch.float16, | |
| # ) | |
| # peft_base_model = AutoModelForCausalLM.from_pretrained( | |
| # config.base_model_name_or_path, | |
| # return_dict=True, | |
| # quantization_config=bnb_config, | |
| # device_map="auto", | |
| # trust_remote_code=True, | |
| # ) | |
| # peft_model = PeftModel.from_pretrained(peft_base_model, PEFT_MODEL) | |
| # peft_tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
| # peft_tokenizer.pad_token = peft_tokenizer.eos_token | |
| # return peft_model, peft_tokenizer | |
| # def init_llm_chain(peft_model, peft_tokenizer): | |
| # class CustomLLM(LLM): | |
| # def _call(self, prompt: str, stop=None, run_manager=None) -> str: | |
| # device = "cuda:0" | |
| # peft_encoding = peft_tokenizer(prompt, return_tensors="pt").to(device) | |
| # peft_outputs = peft_model.generate(input_ids=peft_encoding.input_ids, generation_config=GenerationConfig(max_new_tokens=256, pad_token_id = peft_tokenizer.eos_token_id, \ | |
| # eos_token_id = peft_tokenizer.eos_token_id, attention_mask = peft_encoding.attention_mask, \ | |
| # temperature=0.4, top_p=0.6, repetition_penalty=1.3, num_return_sequences=1,)) | |
| # peft_text_output = peft_tokenizer.decode(peft_outputs[0], skip_special_tokens=True) | |
| # return peft_text_output | |
| # @property | |
| # def _llm_type(self) -> str: | |
| # return "custom" | |
| # llm = CustomLLM() | |
| # template = """Answer the following question truthfully. | |
| # If you don't know the answer, respond 'Sorry, I don't know the answer to this question.'. | |
| # If the question is too complex, respond 'Kindly, consult a psychiatrist for further queries.'. | |
| # Example Format: | |
| # <HUMAN>: question here | |
| # <ASSISTANT>: answer here | |
| # Begin! | |
| # <HUMAN>: {query} | |
| # <ASSISTANT>:""" | |
| # prompt = PromptTemplate(template=template, input_variables=["query"]) | |
| # llm_chain = LLMChain(prompt=prompt, llm=llm) | |
| # return llm_chain | |
| # def user(user_message, history): | |
| # return "", history + [[user_message, None]] | |
| # def bot(history): | |
| # if len(history) >= 2: | |
| # query = history[-2][0] + "\n" + history[-2][1] + "\nHere, is the next QUESTION: " + history[-1][0] | |
| # else: | |
| # query = history[-1][0] | |
| # bot_message = llm_chain.run(query) | |
| # bot_message = post_process_chat(bot_message) | |
| # history[-1][1] = "" | |
| # history[-1][1] += bot_message | |
| # return history | |
| # def post_process_chat(bot_message): | |
| # try: | |
| # bot_message = re.findall(r"<ASSISTANT>:.*?Begin!", bot_message, re.DOTALL)[1] | |
| # except IndexError: | |
| # pass | |
| # bot_message = re.split(r'<ASSISTANT>\:?\s?', bot_message)[-1].split("Begin!")[0] | |
| # bot_message = re.sub(r"^(.*?\.)(?=\n|$)", r"\1", bot_message, flags=re.DOTALL) | |
| # try: | |
| # bot_message = re.search(r"(.*\.)", bot_message, re.DOTALL).group(1) | |
| # except AttributeError: | |
| # pass | |
| # bot_message = re.sub(r"\n\d.$", "", bot_message) | |
| # bot_message = re.split(r"(Goodbye|Take care|Best Wishes)", bot_message, flags=re.IGNORECASE)[0].strip() | |
| # bot_message = bot_message.replace("\n\n", "\n") | |
| # return bot_message | |
| # model = "heliosbrahma/falcon-7b-sharded-bf16-finetuned-mental-health-conversational" | |
| # peft_model, peft_tokenizer = init_model_and_tokenizer(PEFT_MODEL = model) | |
| # with gr.Blocks() as interface: | |
| # gr.HTML("""<h1>Welcome to Mental Health Conversational AI</h1>""") | |
| # gr.Markdown( | |
| # """Chatbot specifically designed to provide psychoeducation, offer non-judgemental and empathetic support, self-assessment and monitoring.<br> | |
| # Get instant response for any mental health related queries. If the chatbot seems you need external support, then it will respond appropriately.<br>""" | |
| # ) | |
| # chatbot = gr.Chatbot() | |
| # query = gr.Textbox(label="Type your query here, then press 'enter' and scroll up for response") | |
| # clear = gr.Button(value="Clear Chat History!") | |
| # clear.style(size="sm") | |
| # llm_chain = init_llm_chain(peft_model, peft_tokenizer) | |
| # query.submit(user, [query, chatbot], [query, chatbot], queue=False).then(bot, chatbot, chatbot) | |
| # clear.click(lambda: None, None, chatbot, queue=False) | |
| # interface.queue().launch() |