Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,35 +1,34 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from transformers import AutoProcessor, AutoModel, VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
| 3 |
-
from PIL import Image
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
| 8 |
-
model.load_state_dict(torch.load("model.pth", map_location=torch.device('cpu')))
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
| 18 |
-
output_ids = model.generate(pixel_values, max_length=100, num_beams=5, early_stopping=True)
|
| 19 |
-
caption = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
| 20 |
-
return caption
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
def main():
|
| 24 |
-
st.title("Image Captioning")
|
| 25 |
-
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
| 26 |
|
| 27 |
-
|
| 28 |
-
image = Image.open(uploaded_file)
|
| 29 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import io
|
| 4 |
|
| 5 |
+
st.title("Artisan Product Submission Form")
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
uploaded_file = st.file_uploader("Choose a file", type=["png", "jpg", "jpeg"])
|
| 8 |
+
|
| 9 |
+
if uploaded_file is not None:
|
| 10 |
+
# To read file as bytes:
|
| 11 |
+
bytes_data = uploaded_file.getvalue()
|
| 12 |
+
st.write("Filename: ", uploaded_file.name)
|
| 13 |
+
# st.write(bytes_data) # This will display the raw bytes, typically not useful for users
|
| 14 |
|
| 15 |
+
# To display the image
|
| 16 |
+
image = Image.open(io.BytesIO(bytes_data))
|
| 17 |
+
st.image(image, caption='Uploaded Image.', use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
+
# Creating text input box
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
st.header("Tell us about your product")
|
|
|
|
|
|
|
| 22 |
|
| 23 |
+
# Input fields
|
| 24 |
+
product_type = st.text_input("Type of Product", placeholder="e.g., Handmade Jewelry, Pottery, Painting")
|
| 25 |
+
product_origin = st.text_input("Product Origin", placeholder="e.g., City, Country, Region")
|
| 26 |
+
product_description = st.text_area("Brief Description", placeholder="Provide a brief description of your product")
|
| 27 |
|
| 28 |
+
# Submit button
|
| 29 |
+
if st.button("Submit"):
|
| 30 |
+
st.write("Thank you for your submission!")
|
| 31 |
+
st.write("### Product Details")
|
| 32 |
+
st.write(f"**Type of Product:** {product_type}")
|
| 33 |
+
st.write(f"**Product Origin:** {product_origin}")
|
| 34 |
+
st.write(f"**Description:** {product_description}")
|