Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,24 +3,64 @@ from transformers import AutoProcessor, AutoModelForImageClassification
|
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
model = AutoModelForImageClassification.from_pretrained("prithivMLmods/Alphabet-Sign-Language-Detection")
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def predict_sign(image):
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
gr.Interface(
|
| 21 |
fn=predict_sign,
|
| 22 |
-
inputs="
|
| 23 |
-
outputs="
|
| 24 |
-
title=
|
| 25 |
-
description=
|
| 26 |
-
|
|
|
|
|
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
|
| 6 |
+
# ✅ Modelo válido y público
|
| 7 |
+
MODEL_NAME = "prithivMLmods/Alphabet-Sign-Language-Detection"
|
|
|
|
| 8 |
|
| 9 |
+
# --- Carga del modelo y procesador ---
|
| 10 |
+
try:
|
| 11 |
+
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
| 12 |
+
model = AutoModelForImageClassification.from_pretrained(MODEL_NAME)
|
| 13 |
+
model.eval()
|
| 14 |
+
print(f"✅ Modelo '{MODEL_NAME}' cargado correctamente.")
|
| 15 |
+
except Exception as e:
|
| 16 |
+
print(f"❌ Error al cargar el modelo '{MODEL_NAME}': {e}")
|
| 17 |
+
model, processor = None, None
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# --- Función de predicción ---
|
| 21 |
def predict_sign(image):
|
| 22 |
+
if model is None or processor is None:
|
| 23 |
+
return "❌ No se pudo cargar el modelo correctamente."
|
| 24 |
+
|
| 25 |
+
try:
|
| 26 |
+
# Aseguramos formato y tamaño
|
| 27 |
+
image = image.convert("RGB").resize((224, 224))
|
| 28 |
+
|
| 29 |
+
# Preprocesamiento
|
| 30 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 31 |
+
|
| 32 |
+
# Inferencia sin gradientes
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
outputs = model(**inputs)
|
| 35 |
+
logits = outputs.logits
|
| 36 |
+
predicted_class = logits.argmax(-1).item()
|
| 37 |
+
|
| 38 |
+
# Obtener etiqueta (letra)
|
| 39 |
+
label = model.config.id2label.get(predicted_class, "Desconocido")
|
| 40 |
+
return f"🖐 Letra detectada: {label}"
|
| 41 |
+
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"⚠️ Error durante la predicción: {e}")
|
| 44 |
+
return f"⚠️ Error en la predicción: {e}"
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# --- Interfaz de Gradio ---
|
| 48 |
+
title = "🤖 Reconocimiento de Lenguaje de Señas (ASL)"
|
| 49 |
+
description = (
|
| 50 |
+
f"Sube una imagen con una seña del alfabeto ASL (A–Z). <br>"
|
| 51 |
+
f"Modelo utilizado: <code>{MODEL_NAME}</code>"
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
examples = [
|
| 55 |
+
["https://placehold.co/400x400/808080/FFFFFF?text=Letra+A"],
|
| 56 |
+
]
|
| 57 |
|
| 58 |
gr.Interface(
|
| 59 |
fn=predict_sign,
|
| 60 |
+
inputs=gr.Image(type="pil", label="📸 Sube una imagen de una seña"),
|
| 61 |
+
outputs=gr.Textbox(label="Predicción"),
|
| 62 |
+
title=title,
|
| 63 |
+
description=description,
|
| 64 |
+
examples=examples,
|
| 65 |
+
allow_flagging="never"
|
| 66 |
+
).launch()
|