Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +33 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
|
| 4 |
+
classifier = pipeline("image-classification", model="XenArcAI/AIRealNet")
|
| 5 |
+
|
| 6 |
+
def recognize(img):
|
| 7 |
+
results = classifier(img)
|
| 8 |
+
return {r["label"]: round(r["score"], 3) for r in results}
|
| 9 |
+
|
| 10 |
+
with gr.Blocks() as demo: # removed theme for compatibility
|
| 11 |
+
gr.Markdown(
|
| 12 |
+
"""
|
| 13 |
+
# **XenArcAI**
|
| 14 |
+
# 🖼️ AIRealNet Image Recognition
|
| 15 |
+
Upload an image and let **AIRealNet** identify what's inside.
|
| 16 |
+
"""
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
with gr.Row():
|
| 20 |
+
with gr.Column():
|
| 21 |
+
inp = gr.Image(type="pil", label="Upload Image")
|
| 22 |
+
btn = gr.Button("Run Recognition")
|
| 23 |
+
with gr.Column():
|
| 24 |
+
out = gr.Label(num_top_classes=2, label="Predictions")
|
| 25 |
+
|
| 26 |
+
examples = gr.Examples(
|
| 27 |
+
examples=["examples/cat.jpg", "examples/dog.jpg", "examples/car.jpg"],
|
| 28 |
+
inputs=inp
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
btn.click(fn=recognize, inputs=inp, outputs=[out])
|
| 32 |
+
|
| 33 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
safetensors
|
| 4 |
+
gradio
|