Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,19 +4,19 @@ from snac import SNAC
|
|
| 4 |
import soundfile as sf
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
-
|
|
|
|
| 8 |
model = AutoModelForCausalLM.from_pretrained(
|
| 9 |
"maya-research/maya1",
|
| 10 |
-
|
| 11 |
-
device_map=
|
| 12 |
)
|
| 13 |
tokenizer = AutoTokenizer.from_pretrained("maya-research/maya1")
|
| 14 |
-
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(
|
| 15 |
|
| 16 |
-
# Main generation function
|
| 17 |
def generate_voice(description, text):
|
| 18 |
prompt = f'<description="{description}"> {text}'
|
| 19 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(
|
| 20 |
with torch.inference_mode():
|
| 21 |
outputs = model.generate(
|
| 22 |
**inputs,
|
|
@@ -25,28 +25,30 @@ def generate_voice(description, text):
|
|
| 25 |
top_p=0.9,
|
| 26 |
do_sample=True
|
| 27 |
)
|
| 28 |
-
|
| 29 |
generated_ids = outputs[0, inputs['input_ids'].shape[1]:]
|
| 30 |
snac_tokens = [t.item() for t in generated_ids if 128266 <= t <= 156937]
|
| 31 |
-
|
| 32 |
frames = len(snac_tokens) // 7
|
| 33 |
codes = [[], [], []]
|
| 34 |
for i in range(frames):
|
| 35 |
-
s = snac_tokens[i*7:(i+1)*7]
|
| 36 |
-
codes[0].append((s[0]-128266) % 4096)
|
| 37 |
-
codes[1].extend([(s[1]-128266) % 4096, (s[4]-128266) % 4096])
|
| 38 |
-
codes[2].extend([
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
with torch.inference_mode():
|
| 43 |
audio = snac_model.decoder(snac_model.quantizer.from_codes(codes_tensor))[0, 0].cpu().numpy()
|
| 44 |
-
|
| 45 |
out_path = "output.wav"
|
| 46 |
sf.write(out_path, audio, 24000)
|
| 47 |
return out_path
|
| 48 |
|
| 49 |
-
# Gradio interface — no preset text, fully user-controlled
|
| 50 |
demo = gr.Interface(
|
| 51 |
fn=generate_voice,
|
| 52 |
inputs=[
|
|
@@ -54,8 +56,8 @@ demo = gr.Interface(
|
|
| 54 |
gr.Textbox(label="Text to Speak (type anything you want)")
|
| 55 |
],
|
| 56 |
outputs=gr.Audio(label="Generated Speech"),
|
| 57 |
-
title="🎙️ Maya1 Voice Generator",
|
| 58 |
-
description="Generate expressive emotional speech using
|
| 59 |
)
|
| 60 |
|
| 61 |
if __name__ == "__main__":
|
|
|
|
| 4 |
import soundfile as sf
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
+
device = "cpu"
|
| 8 |
+
|
| 9 |
model = AutoModelForCausalLM.from_pretrained(
|
| 10 |
"maya-research/maya1",
|
| 11 |
+
dtype=torch.bfloat16,
|
| 12 |
+
device_map=None
|
| 13 |
)
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained("maya-research/maya1")
|
| 15 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device)
|
| 16 |
|
|
|
|
| 17 |
def generate_voice(description, text):
|
| 18 |
prompt = f'<description="{description}"> {text}'
|
| 19 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 20 |
with torch.inference_mode():
|
| 21 |
outputs = model.generate(
|
| 22 |
**inputs,
|
|
|
|
| 25 |
top_p=0.9,
|
| 26 |
do_sample=True
|
| 27 |
)
|
|
|
|
| 28 |
generated_ids = outputs[0, inputs['input_ids'].shape[1]:]
|
| 29 |
snac_tokens = [t.item() for t in generated_ids if 128266 <= t <= 156937]
|
|
|
|
| 30 |
frames = len(snac_tokens) // 7
|
| 31 |
codes = [[], [], []]
|
| 32 |
for i in range(frames):
|
| 33 |
+
s = snac_tokens[i * 7:(i + 1) * 7]
|
| 34 |
+
codes[0].append((s[0] - 128266) % 4096)
|
| 35 |
+
codes[1].extend([(s[1] - 128266) % 4096, (s[4] - 128266) % 4096])
|
| 36 |
+
codes[2].extend([
|
| 37 |
+
(s[2] - 128266) % 4096,
|
| 38 |
+
(s[3] - 128266) % 4096,
|
| 39 |
+
(s[5] - 128266) % 4096,
|
| 40 |
+
(s[6] - 128266) % 4096
|
| 41 |
+
])
|
| 42 |
+
codes_tensor = [
|
| 43 |
+
torch.tensor(c, dtype=torch.long, device=device).unsqueeze(0)
|
| 44 |
+
for c in codes
|
| 45 |
+
]
|
| 46 |
with torch.inference_mode():
|
| 47 |
audio = snac_model.decoder(snac_model.quantizer.from_codes(codes_tensor))[0, 0].cpu().numpy()
|
|
|
|
| 48 |
out_path = "output.wav"
|
| 49 |
sf.write(out_path, audio, 24000)
|
| 50 |
return out_path
|
| 51 |
|
|
|
|
| 52 |
demo = gr.Interface(
|
| 53 |
fn=generate_voice,
|
| 54 |
inputs=[
|
|
|
|
| 56 |
gr.Textbox(label="Text to Speak (type anything you want)")
|
| 57 |
],
|
| 58 |
outputs=gr.Audio(label="Generated Speech"),
|
| 59 |
+
title="🎙️ Maya1 Voice Generator (CPU-only)",
|
| 60 |
+
description="Generate expressive emotional speech using Maya1 + SNAC on CPU."
|
| 61 |
)
|
| 62 |
|
| 63 |
if __name__ == "__main__":
|