File size: 5,732 Bytes
67ec8f1
3cce116
 
 
 
67ec8f1
3cce116
67ec8f1
 
3cce116
67ec8f1
 
 
 
3cce116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67ec8f1
 
3cce116
 
67ec8f1
 
3cce116
 
 
 
 
 
 
 
 
67ec8f1
3cce116
 
67ec8f1
3cce116
 
 
 
 
67ec8f1
3cce116
 
 
67ec8f1
3cce116
 
67ec8f1
3cce116
67ec8f1
 
3cce116
67ec8f1
3cce116
 
 
67ec8f1
3cce116
 
 
 
 
 
67ec8f1
3cce116
 
 
 
 
 
 
67ec8f1
3cce116
 
67ec8f1
3cce116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67ec8f1
3cce116
67ec8f1
3cce116
 
67ec8f1
3cce116
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# timesfm_backend.py
import time
import json
import logging
from typing import Any, Dict, Optional

import numpy as np
import torch

from backends_base import ChatBackend, ImagesBackend
from config import settings

logger = logging.getLogger(__name__)

try:
    from timesfm import TimesFm
    _TIMESFM_AVAILABLE = True
except Exception as e:
    logger.warning("timesfm not available (%s)", e)
    TimesFm = None
    _TIMESFM_AVAILABLE = False


# ---------- small helpers ----------
def _parse_series(series: Any) -> np.ndarray:
    if series is None:
        raise ValueError("series is required")
    if isinstance(series, dict):
        if "values" in series:
            series = series["values"]
        elif "y" in series:
            series = series["y"]

    vals = []
    if isinstance(series, (list, tuple)):
        if series and isinstance(series[0], dict):
            for item in series:
                if "y" in item:
                    vals.append(float(item["y"]))
                elif "value" in item:
                    vals.append(float(item["value"]))
        else:
            vals = [float(x) for x in series]
    else:
        raise ValueError("series must be a list/tuple or dict with 'values'/'y'")
    if not vals:
        raise ValueError("series is empty")
    return np.asarray(vals, dtype=np.float32)


def _fallback_forecast(y: np.ndarray, horizon: int) -> np.ndarray:
    if horizon <= 0:
        return np.zeros((0,), dtype=np.float32)
    k = 4 if y.shape[0] >= 4 else y.shape[0]
    base = float(np.mean(y[-k:]))
    return np.full((horizon,), base, dtype=np.float32)


# ---------- backend ----------
class TimesFMBackend(ChatBackend):
    def __init__(self, model_id: Optional[str] = None, device: Optional[str] = None):
        self.model_id = model_id or "google/timesfm-2.5-200m-pytorch"
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self._model = None

    def _ensure_model(self):
        if self._model is not None or not _TIMESFM_AVAILABLE:
            return
        try:
            # you may need to adjust context_len/horizon_len to match checkpoint
            self._model = TimesFm(
                context_len=512,
                horizon_len=128,
                input_patch_len=32,
            )
            self._model.load_from_checkpoint(self.model_id)
            self._model.to(self.device)
            logger.info("TimesFM model loaded from %s on %s", self.model_id, self.device)
        except Exception as e:
            logger.exception("Failed to init TimesFM, fallback only. %s", e)
            self._model = None

    async def forecast(self, payload: Dict[str, Any]) -> Dict[str, Any]:
        if "data" in payload and isinstance(payload["data"], dict):
            payload = {**payload, **payload["data"]}
        if "timeseries" in payload and isinstance(payload["timeseries"], dict):
            payload = {**payload, **payload["timeseries"]}

        y = _parse_series(payload.get("series"))
        horizon = int(payload.get("horizon", 0))
        freq = payload.get("freq")

        if horizon <= 0:
            raise ValueError("horizon must be positive")

        self._ensure_model()

        note = None
        if self._model is not None:
            try:
                x = torch.tensor(y, dtype=torch.float32, device=self.device)[None, :]
                preds = self._model.forecast_on_batch(x, horizon)
                fc = preds[0].detach().cpu().numpy().astype(float).tolist()
            except Exception as e:
                logger.exception("TimesFM forecast failed, using fallback. %s", e)
                fc = _fallback_forecast(y, horizon).tolist()
                note = "fallback_used_due_to_predict_error"
        else:
            fc = _fallback_forecast(y, horizon).tolist()
            note = "fallback_used_timesfm_missing"

        return {
            "model": self.model_id,
            "horizon": horizon,
            "freq": freq,
            "forecast": fc,
            "note": note,
        }

    async def stream(self, request: Dict[str, Any]):
        rid = f"chatcmpl-timesfm-{int(time.time())}"
        now = int(time.time())
        payload = dict(request) if isinstance(request, dict) else {}
        try:
            result = await self.forecast(payload)
        except Exception as e:
            content = json.dumps({"error": str(e)}, separators=(",", ":"), ensure_ascii=False)
            yield {
                "id": rid,
                "object": "chat.completion.chunk",
                "created": now,
                "model": self.model_id,
                "choices": [{"index": 0, "delta": {"role": "assistant", "content": content}, "finish_reason": "stop"}],
            }
            return

        content = json.dumps(
            {
                "model": result["model"],
                "horizon": result["horizon"],
                "freq": result["freq"],
                "forecast": result["forecast"],
                "note": result.get("note"),
                "backend": "timesfm",
            },
            separators=(",", ":"),
            ensure_ascii=False,
        )
        yield {
            "id": rid,
            "object": "chat.completion.chunk",
            "created": now,
            "model": self.model_id,
            "choices": [{"index": 0, "delta": {"role": "assistant", "content": content}, "finish_reason": "stop"}],
        }


class StubImagesBackend(ImagesBackend):
    async def generate_b64(self, request: Dict[str, Any]) -> str:
        logger.warning("Image generation not supported in TimesFM backend.")
        return "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII="