File size: 5,732 Bytes
67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# timesfm_backend.py
import time
import json
import logging
from typing import Any, Dict, Optional
import numpy as np
import torch
from backends_base import ChatBackend, ImagesBackend
from config import settings
logger = logging.getLogger(__name__)
try:
from timesfm import TimesFm
_TIMESFM_AVAILABLE = True
except Exception as e:
logger.warning("timesfm not available (%s)", e)
TimesFm = None
_TIMESFM_AVAILABLE = False
# ---------- small helpers ----------
def _parse_series(series: Any) -> np.ndarray:
if series is None:
raise ValueError("series is required")
if isinstance(series, dict):
if "values" in series:
series = series["values"]
elif "y" in series:
series = series["y"]
vals = []
if isinstance(series, (list, tuple)):
if series and isinstance(series[0], dict):
for item in series:
if "y" in item:
vals.append(float(item["y"]))
elif "value" in item:
vals.append(float(item["value"]))
else:
vals = [float(x) for x in series]
else:
raise ValueError("series must be a list/tuple or dict with 'values'/'y'")
if not vals:
raise ValueError("series is empty")
return np.asarray(vals, dtype=np.float32)
def _fallback_forecast(y: np.ndarray, horizon: int) -> np.ndarray:
if horizon <= 0:
return np.zeros((0,), dtype=np.float32)
k = 4 if y.shape[0] >= 4 else y.shape[0]
base = float(np.mean(y[-k:]))
return np.full((horizon,), base, dtype=np.float32)
# ---------- backend ----------
class TimesFMBackend(ChatBackend):
def __init__(self, model_id: Optional[str] = None, device: Optional[str] = None):
self.model_id = model_id or "google/timesfm-2.5-200m-pytorch"
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self._model = None
def _ensure_model(self):
if self._model is not None or not _TIMESFM_AVAILABLE:
return
try:
# you may need to adjust context_len/horizon_len to match checkpoint
self._model = TimesFm(
context_len=512,
horizon_len=128,
input_patch_len=32,
)
self._model.load_from_checkpoint(self.model_id)
self._model.to(self.device)
logger.info("TimesFM model loaded from %s on %s", self.model_id, self.device)
except Exception as e:
logger.exception("Failed to init TimesFM, fallback only. %s", e)
self._model = None
async def forecast(self, payload: Dict[str, Any]) -> Dict[str, Any]:
if "data" in payload and isinstance(payload["data"], dict):
payload = {**payload, **payload["data"]}
if "timeseries" in payload and isinstance(payload["timeseries"], dict):
payload = {**payload, **payload["timeseries"]}
y = _parse_series(payload.get("series"))
horizon = int(payload.get("horizon", 0))
freq = payload.get("freq")
if horizon <= 0:
raise ValueError("horizon must be positive")
self._ensure_model()
note = None
if self._model is not None:
try:
x = torch.tensor(y, dtype=torch.float32, device=self.device)[None, :]
preds = self._model.forecast_on_batch(x, horizon)
fc = preds[0].detach().cpu().numpy().astype(float).tolist()
except Exception as e:
logger.exception("TimesFM forecast failed, using fallback. %s", e)
fc = _fallback_forecast(y, horizon).tolist()
note = "fallback_used_due_to_predict_error"
else:
fc = _fallback_forecast(y, horizon).tolist()
note = "fallback_used_timesfm_missing"
return {
"model": self.model_id,
"horizon": horizon,
"freq": freq,
"forecast": fc,
"note": note,
}
async def stream(self, request: Dict[str, Any]):
rid = f"chatcmpl-timesfm-{int(time.time())}"
now = int(time.time())
payload = dict(request) if isinstance(request, dict) else {}
try:
result = await self.forecast(payload)
except Exception as e:
content = json.dumps({"error": str(e)}, separators=(",", ":"), ensure_ascii=False)
yield {
"id": rid,
"object": "chat.completion.chunk",
"created": now,
"model": self.model_id,
"choices": [{"index": 0, "delta": {"role": "assistant", "content": content}, "finish_reason": "stop"}],
}
return
content = json.dumps(
{
"model": result["model"],
"horizon": result["horizon"],
"freq": result["freq"],
"forecast": result["forecast"],
"note": result.get("note"),
"backend": "timesfm",
},
separators=(",", ":"),
ensure_ascii=False,
)
yield {
"id": rid,
"object": "chat.completion.chunk",
"created": now,
"model": self.model_id,
"choices": [{"index": 0, "delta": {"role": "assistant", "content": content}, "finish_reason": "stop"}],
}
class StubImagesBackend(ImagesBackend):
async def generate_b64(self, request: Dict[str, Any]) -> str:
logger.warning("Image generation not supported in TimesFM backend.")
return "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII="
|