|
|
import streamlit as st |
|
|
from transformers import BartForConditionalGeneration, BartTokenizer |
|
|
|
|
|
|
|
|
model_name = "facebook/bart-large-cnn" |
|
|
model = BartForConditionalGeneration.from_pretrained(model_name) |
|
|
tokenizer = BartTokenizer.from_pretrained(model_name) |
|
|
|
|
|
|
|
|
st.title("Generador de Resúmenes de Texto en Español") |
|
|
text = st.text_area("Ingresa el texto que deseas resumir:") |
|
|
|
|
|
|
|
|
summary_length = st.number_input("Longitud del resumen (en palabras):", min_value=10, max_value=300, value=50) |
|
|
|
|
|
if st.button("Generar Resumen"): |
|
|
if text: |
|
|
|
|
|
input_ids = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=1024, truncation=True) |
|
|
summary_ids = model.generate(input_ids, max_length=summary_length, min_length=10, length_penalty=2.0, num_beams=4, early_stopping=True) |
|
|
|
|
|
|
|
|
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) |
|
|
st.subheader("Resumen:") |
|
|
st.write(summary) |
|
|
else: |
|
|
st.warning("Por favor, ingresa un texto para resumir.") |
|
|
|
|
|
st.write("Powered by Kuke Face Transformers") |
|
|
|