Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,15 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoModelForVision2Seq, AutoProcessor,
|
| 3 |
import torch
|
| 4 |
|
|
|
|
|
|
|
|
|
|
| 5 |
quantization_config = BitsAndBytesConfig(
|
| 6 |
load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.float16
|
| 7 |
)
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
model = AutoModelForVision2Seq.from_pretrained(
|
| 11 |
-
"HuggingFaceM4/idefics2-8b",
|
| 12 |
-
torch_dtype=torch.float16,
|
| 13 |
-
quantization_config=quantization_config,
|
| 14 |
-
)
|
| 15 |
|
| 16 |
|
| 17 |
def respond(multimodal_input):
|
|
@@ -31,4 +29,14 @@ def respond(multimodal_input):
|
|
| 31 |
return generated_text
|
| 32 |
|
| 33 |
|
| 34 |
-
gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForVision2Seq, AutoProcessor, BitsAndBytesConfig
|
| 3 |
import torch
|
| 4 |
|
| 5 |
+
|
| 6 |
+
model_id = "HuggingFaceM4/idefics2-8b"
|
| 7 |
+
|
| 8 |
quantization_config = BitsAndBytesConfig(
|
| 9 |
load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.float16
|
| 10 |
)
|
| 11 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 12 |
+
model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype=torch.float16, quantization_config=quantization_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
def respond(multimodal_input):
|
|
|
|
| 29 |
return generated_text
|
| 30 |
|
| 31 |
|
| 32 |
+
gr.Interface(
|
| 33 |
+
respond,
|
| 34 |
+
inputs=[gr.MultimodalTextbox(file_types=["image"], show_label=False)],
|
| 35 |
+
outputs="text",
|
| 36 |
+
title="IDEFICS2-8B DPO",
|
| 37 |
+
description="Try IDEFICS2-8B fine-tuned using direct preference optimization (DPO) in this demo. Learn more about vision language model DPO integration of TRL [here](https://huggingface.co/blog/dpo_vlm).",
|
| 38 |
+
examples=[
|
| 39 |
+
{"text": "What is the type of flower in the image and what insect is on it?", "files": ["./bee.jpg"]},
|
| 40 |
+
{"text": "Describe the image", "files": ["./howl.jpg"]},
|
| 41 |
+
],
|
| 42 |
+
).launch()
|